142 research outputs found
Non-Fourier heat transport in metal-dielectric core-shell nanoparticles under ultrafast laser pulse excitation
Relaxation dynamics of embedded metal nanoparticles after ultrafast laser
pulse excitation is driven by thermal phenomena of different origins the
accurate description of which is crucial for interpreting experimental results:
hot electron gas generation, electron-phonon coupling, heat transfer to the
particle environment and heat propagation in the latter. Regardingthis last
mechanism, it is well known that heat transport in nanoscale structures and/or
at ultrashort timescales may deviate from the predictions of the Fourier law.
In these cases heat transport may rather be described by the Boltzmann
transport equation. We present a numerical model allowing us to determine the
electron and lattice temperature dynamics in a spherical gold nanoparticle core
under subpicosecond pulsed excitation, as well as that of the surrounding shell
dielectric medium. For this, we have used the electron-phonon coupling equation
in the particle with a source term linked with the laser pulse absorption, and
the ballistic-diffusive equations for heat conduction in the host medium.
Either thermalizing or adiabatic boundary conditions have been considered at
the shell external surface. Our results show that the heat transfer rate from
the particle to the matrix can be significantly smaller than the prediction of
Fourier's law. Consequently, the particle temperature rise is larger and its
cooling dynamics might be slower than that obtained by using Fourier's law.
This difference is attributed to the nonlocal and nonequilibrium heat
conduction in the vicinity of the core nanoparticle. These results are expected
to be of great importance for analyzing pump-probe experiments performed on
single nanoparticles or nanocomposite media
'Spillout' effect in gold nanoclusters embedded in c-Al2O3(0001) matrix
Gold nanoclusters are grown by 1.8 MeV Au^\sup{2+} implantation on
c-Al\sub{2}O\sub{3}(0001)substrate and subsequent air annealing at temperatures
1273K. Post-annealed samples show plasmon resonance in the optical (561-579 nm)
region for average cluster sizes ~1.72-2.4 nm. A redshift of the plasmon peak
with decreasing cluster size in the post-annealed samples is assigned to the
'spillout' effect (reduction of electron density) for clusters with ~157-427
number of Au atoms fully embedded in crystalline dielectric matrix with
increased polarizability in the embedded system.Comment: 14 Pages (figures included); Accepted in Chem. Phys. Lett (In Press
Resonant Raman Scattering by quadrupolar vibrations of Ni-Ag Core-shell Nanoparticles
Low-frequency Raman scattering experiments have been performed on thin films
consisting of nickel-silver composite nanoparticles embedded in alumina matrix.
It is observed that the Raman scattering by the quadrupolar modes, strongly
enhanced when the light excitation is resonant with the surface dipolar
excitation, is mainly governed by the silver electron contribution to the
plasmon excitation. The Raman results are in agreement with a core-shell
structure of the nanoparticles, the silver shell being loosely bonded to the
nickel core.Comment: 3 figures. To be published in Phys. Rev.
Wetting to Non-wetting Transition in Sodium-Coated C_60
Based on ab initi and density-functional theory calculations, an empirical
potential is proposed to model the interaction between a fullerene molecule and
many sodium atoms. This model predicts homogeneous coverage of C_60 below 8 Na
atoms, and a progressive droplet formation above this size. The effects of
ionization, temperature, and external electric field indicate that the various,
and apparently contradictory, experimental results can indeed be put into
agreement.Comment: 4 pages, 4 postscript figure
Origin of Shifts in the Surface Plasmon Resonance Frequencies for Au and Ag Nanoparticles
Origin of shifts in the surface plasmon resonance (SPR) frequency for noble
metal (Au, Ag) nanoclusters are discussed in this book chapter. Spill out of
electron from the Fermi surface is considered as the origin of red shift. On
the other hand, both screening of electrons of the noble metal in porous media
and quantum effect of screen surface electron are considered for the observed
blue shift in the SPR peak position.Comment: 37 pages, 14 Figures in the submitted book chapter of The Annual
Reviews in Plasmonics, edited by Professor Chris D. Geddes. Springer Scinec
Continuum limit of amorphous elastic bodies: A finite-size study of low frequency harmonic vibrations
The approach of the elastic continuum limit in small amorphous bodies formed
by weakly polydisperse Lennard-Jones beads is investigated in a systematic
finite-size study. We show that classical continuum elasticity breaks down when
the wavelength of the sollicitation is smaller than a characteristic length of
approximately 30 molecular sizes. Due to this surprisingly large effect
ensembles containing up to N=40,000 particles have been required in two
dimensions to yield a convincing match with the classical continuum predictions
for the eigenfrequency spectrum of disk-shaped aggregates and periodic bulk
systems. The existence of an effective length scale \xi is confirmed by the
analysis of the (non-gaussian) noisy part of the low frequency vibrational
eigenmodes. Moreover, we relate it to the {\em non-affine} part of the
displacement fields under imposed elongation and shear. Similar correlations
(vortices) are indeed observed on distances up to \xi~30 particle sizes.Comment: 28 pages, 13 figures, 3 table
Nucleation of a sodium droplet on C60
We investigate theoretically the progressive coating of C60 by several sodium
atoms. Density functional calculations using a nonlocal functional are
performed for NaC60 and Na2C60 in various configurations. These data are used
to construct an empirical atomistic model in order to treat larger sizes in a
statistical and dynamical context. Fluctuating charges are incorporated to
account for charge transfer between sodium and carbon atoms. By performing
systematic global optimization in the size range 1<=n<=30, we find that Na_nC60
is homogeneously coated at small sizes, and that a growing droplet is formed
above n=>8. The separate effects of single ionization and thermalization are
also considered, as well as the changes due to a strong external electric
field. The present results are discussed in the light of various experimental
data.Comment: 17 pages, 10 figure
Density functional study of Au (n=2-20) clusters: lowest-energy structures and electronic properties
We have investigated the lowest-energy structures and electronic properties
of the Au(n=2-20) clusters based on density functional theory (DFT) with
local density approximation. The small Au clusters adopt planar structures
up to n=6. Tabular cage structures are preferred in the range of n=10-14 and a
structural transition from tabular cage-like structure to compact
near-spherical structure is found around n=15. The most stable configurations
obtained for Au and Au clusters are amorphous instead of
icosahedral or fcc-like, while the electronic density of states sensitively
depend on the cluster geometry. Dramatic odd-even alternative behaviors are
obtained in the relative stability, HOMO-LUMO gaps and ionization potentials of
gold clusters. The size evolution of electronic properties is discussed and the
theoretical ionization potentials of Au clusters compare well with
experiments.Comment: 6 pages, 7 figure
Stromal Vascular Fraction Transplantation as an Alternative Therapy for Ischemic Heart Failure: Anti-inflammatory Role
<p>Abstract</p> <p>Background</p> <p>The aims of this study were: (1) to show the feasibility of using adipose-derived stromal vascular fraction (SVF) as an alternative to bone marrow mono nuclear cell (BM-MNC) for cell transplantation into chronic ischemic myocardium; and (2) to explore underlying mechanisms with focus on anti-inflammation role of engrafted SVF and BM-MNC post chronic myocardial infarction (MI) against left ventricular (LV) remodelling and cardiac dysfunction.</p> <p>Methods</p> <p>Four weeks after left anterior descending coronary artery ligation, 32 Male Lewis rats with moderate MI were divided into 3 groups. SVF group (n = 12) had SVF cell transplantation (6 à 10<sup>6 </sup>cells). BM-MNC group (n = 12) received BM-MNCs (6 à 10<sup>6</sup>) and the control (n = 10) had culture medium. At 4 weeks, after the final echocardiography, histological sections were stained with Styrus red and immunohistochemical staining was performed for α-smooth muscle actin, von Willebrand factor, CD3, CD8 and CD20.</p> <p>Results</p> <p>At 4 weeks, in SVF and BM-MNC groups, LV diastolic dimension and LV systolic dimension were smaller and fractional shortening was increased in echocardiography, compared to control group. Histology revealed highest vascular density, CD3+ and CD20+ cells in SVF transplanted group. SVF transplantation decreased myocardial mRNA expression of inflammatory cytokines TNF-α, IL-6, MMP-1, TIMP-1 and inhibited collagen deposition.</p> <p>Conclusions</p> <p>Transplantation of adipose derived SVF cells might be a useful therapeutic option for angiogenesis in chronic ischemic heart disease. Anti-inflammation role for SVF and BM transplantation might partly benefit for the cardioprotective effect for chronic ischemic myocardium.</p
- âŠ