5 research outputs found
Mantle-to-crust metal transfer by nanomelts
The transfer of chalcophile metals across the continental lithosphere has been traditionally modeled based on their chemical equilibrium partitioning in sulfide liquids and silicate magmas. Here, we report a suite of Ni-Fe-Cu sulfide droplets across a trans-lithospheric magmatic network linking the subcontinental lithospheric mantle to the overlying continental crust. Petrographic characteristics and numerical calculations both support that the sulfide droplets were mechanically scavenged from the mantle source during partial melting and transported upwards by alkaline magmas rising through the continental lithosphere. Nanoscale investigation by high-resolution transmission electron microscopy (HR-TEM) documents the presence of galena (PbS) nanoinclusions within the sulfide droplets that are involved in the mantle-to-crust magma route. The galena nanoinclusions show a range of microstructural features that are inconsistent with a derivation of PbS by exsolution from the solid products of the Ni-Fe-Cu sulfide liquid. It is argued that galena nanoinclusions crystallized from a precursor Pb(-Cu)-rich nanomelt, which was originally immiscible within the sulfide liquid even at Pb concentrations largely below those required for attaining galena saturation. We suggest that evidence of immiscibility between metal-rich nanomelts and sulfide liquids during magma transport would disrupt the classical way by which metal flux and ore genesis are interpreted, hinting for mechanical transfer of nanophases as a key mechanism for sourcing the amounts of mantle-derived metals that can be concentrated in the crust.This research was supported by the BES-2017-079949 Ph.D. fellowship to E.S. The Spanish projects PID2019-111715GB-I00/AEI/10.13039/501100011033, NANOMET PID2022-138768OB-I00, and MECOBE ProyExcel_00705 provided funding for field emission gun–environmental scanning electron microscopy (FEG-ESEM), focused-ion beam (FIB) and high-resolution transmission electron microscopy (HR-TEM). M.F. and F.P. acknowledge financial support from the Australian Research Council through ARC Linkage Project LP190100785
Effect of beta-carotene-rich tomato lycopene beta-cyclase ( tlcy-b) on cell growth inhibition in HT-29 colon adenocarcinoma cells.
Lycopene beta-cyclase (tlcy-b) tomatoes, obtained by modulating carotenogenesis via genetic engineering, contain a large amount of beta-carotene, as clearly visible by their intense orange colour. In the present study we have subjected tlcy-b tomatoes to an in vitro simulated digestion and analysed the effects of digestate on cell proliferation. To this aim we used HT-29 human colon adenocarcinoma cells, grown in monolayers, as a model. Digested tomatoes were diluted (20 ml, 50 ml and 100 ml/l) in culture medium and added to the cells for different incubation times (24 h, 48 h and 72 h). Inhibition of cell growth by tomato digestate was dose-dependent and resulted from an arrest of cell cycle progression at the G0/G1 and G2/M phase and by apoptosis induction. A down-regulation of cyclin D1, Bcl-2 and Bcl-xl expression was observed. We also found that heat treatment of samples before digestion enhanced beta-carotene release and therefore cell growth inhibition. To induce with purified beta-carotene solubilised in tetrahydrofuran the same cell growth inhibition obtained with the tomato digestate, a higher amount of the carotenoid was necessary, suggesting that beta-carotene micellarised during digestion is utilised more efficiently by the cells, but also that other tomato molecules, reasonably made available during digestion, may be present and cooperate with beta-carotene in promoting cell growth arres
Mantle-to-crust metal transfer by nanomelts
The transfer of chalcophile metals across the continental lithosphere has been traditionally modeled based on their chemical equilibrium partitioning in sulfide liquids and silicate magmas. Here, we report a suite of Ni-Fe-Cu sulfide droplets across a trans-lithospheric magmatic network linking the subcontinental lithospheric mantle to the overlying continental crust. Petrographic characteristics and numerical calculations both support that the sulfide droplets were mechanically scavenged from the mantle source during partial melting and transported upwards by alkaline magmas rising through the continental lithosphere. Nanoscale investigation by high-resolution transmission electron microscopy (HR-TEM) documents the presence of galena (PbS) nanoinclusions within the sulfide droplets that are involved in the mantle-to-crust magma route. The galena nanoinclusions show a range of microstructural features that are inconsistent with a derivation of PbS by exsolution from the solid products of the Ni-Fe-Cu sulfide liquid. It is argued that galena nanoinclusions crystallized from a precursor Pb(-Cu)-rich nanomelt, which was originally immiscible within the sulfide liquid even at Pb concentrations largely below those required for attaining galena saturation. We suggest that evidence of immiscibility between metal-rich nanomelts and sulfide liquids during magma transport would disrupt the classical way by which metal flux and ore genesis are interpreted, hinting for mechanical transfer of nanophases as a key mechanism for sourcing the amounts of mantle-derived metals that can be concentrated in the crust.This research was supported by the BES-2017-079949 Ph.D. fellowship to E.S. The Spanish projects PID2019-111715GB-I00/AEI/10.13039/501100011033, NANOMET PID2022-138768OB-I00, and MECOBE ProyExcel_00705 provided funding for field emission gun–environmental scanning electron microscopy (FEG-ESEM), focused-ion beam (FIB) and high-resolution transmission electron microscopy (HR-TEM). M.F. and F.P. acknowledge financial support from the Australian Research Council through ARC Linkage Project LP190100785. No permission was required to collect the samples during fieldwork. Research grants, infrastructures, and human resources leading to this research have benefited from funding from the European Social Fund and the European Regional Development Fund
Why tocotrienols work better: insights into the in vitro anti-cancer mechanism of vitamin E
The selective constraint of liver uptake and the sustained metabolism of tocotrienols (T3) demonstrate the need for a prompt detoxification of this class of lipophilic vitamers, and thus the potential for cytotoxic effects in hepatic and extra-hepatic tissues. Hypomethylated (γ and δ) forms of T3 show the highest in vitro and in vivo metabolism and are also the most potent natural xenobiotics of the entire vitamin E family of compounds. These stimulate a stress response with the induction of detoxification and antioxidant genes. Depending on the intensity of this response, these genes may confer cell protection or alternatively they stimulate a senescence-like phenotype with cell cycle inhibition or even mitochondrial toxicity and apoptosis. In cancer cells, the uptake rate and thus the cell content of these vitamers is again higher for the hypomethylated forms, and it is the critical factor that drives the dichotomy between protection and toxicity responses to different T3 forms and doses. These aspects suggest the potential for marked biological activity of hypomethylated “highly metabolized” T3 that may result in cytoprotection and cancer prevention or even chemotherapeutic effects. Cytotoxicity and metabolism of hypomethylated T3 have been extensively investigated in vitro using different cell model systems that will be discussed in this review paper as regard molecular mechanisms and possible relevance in cancer therapy