52 research outputs found

    Searching for grapevine fungal trunk pathogens on cover crop roots

    Get PDF
    The potential role of cover crops as alternative hosts for soil-borne fungi plant diseases has not been thoroughly explored. Root samples from cover crops from experimental plots in the CORE Organic Cofund BIOVINE project has been analysed to find out more

    Diversity of Phytophthora Species Associated with Quercus ilex L. in Three Spanish Regions Evaluated by NGS

    Full text link
    [EN] The diversity of Phytophthora species in declining Fagaceae forests in Europe is increasing in the last years. The genus Quercus is one of the most extended Fagaceae genera in Europe, and Q. ilex is the dominant tree in Spain. The introduction of soil-borne pathogens, such as Phytophthora in Fagaceae forests modifies the microbial community present in the rhizosphere, and has relevant environmental and economic consequences. A better understanding of the diversity of Phytophthora spp. associated with Q. ilex is proposed in this study by using Next Generation Sequencing (NGS) in six Q. ilex stands located in three regions in Spain. Thirty-seven Phytophthora phylotypes belonging to clades 1 to 12, except for clades 4, 5 and 11, are detected in this study, which represents a high diversity of Phytophthora species in holm oak Spanish forests. Phytophthora chlamydospora, P. citrophthora, P. gonapodyides, P. lacustris, P. meadii, P. plurivora, P. pseudocryptogea, P. psychrophila and P. quercina were present in the three regions. Seven phylotypes could not be associated with known Phytophthora species, so they were putatively named as Phytophthora sp. Most of the detected phylotypes corresponded to terrestrial Phytophthora species but aquatic species from clades 6 and 9 were also present in all regions.We would like to thank M. Leon from the Instituto Agroforestal Mediterraneo-UPV (Spain) for its technical assistance. This research was supported by funding from the project AGL2011-30438-C02-01 (Ministerio de Economia y Competitividad, Spain) and Euphresco [Instituto Nacional de Investigacion y Tecnologia Agraria y Agroalimentaria (EUPHESCO-CEP: "Current and Emerging Phytophthoras: Research Supporting Risk Assesssment and Risk Management")].Mora-Sala, B.; Gramaje Pérez, D.; Abad Campos, P.; Berbegal Martinez, M. (2019). Diversity of Phytophthora Species Associated with Quercus ilex L. in Three Spanish Regions Evaluated by NGS. Forests. 10(11):1-16. https://doi.org/10.3390/f10110979S1161011Mideros, M. F., Turissini, D. A., Guayazán, N., Ibarra-Avila, H., Danies, G., Cárdenas, M., … Restrepo, S. (2018). Phytophthora betacei, a new species within Phytophthora clade 1c causing late blight on Solanum betaceum in Colombia. Persoonia - Molecular Phylogeny and Evolution of Fungi, 41(1), 39-55. doi:10.3767/persoonia.2018.41.03Tremblay, É. D., Duceppe, M.-O., Bérubé, J. A., Kimoto, T., Lemieux, C., & Bilodeau, G. J. (2018). Screening for Exotic Forest Pathogens to Increase Survey Capacity Using Metagenomics. Phytopathology®, 108(12), 1509-1521. doi:10.1094/phyto-02-18-0028-rBrasier, C. M. (1992). Oak tree mortality in Iberia. Nature, 360(6404), 539-539. doi:10.1038/360539a0Jung, T., Blaschke, H., & Neumann, P. (1996). Isolation, identification and pathogenicity of Phytophthora species from declining oak stands. Forest Pathology, 26(5), 253-272. doi:10.1111/j.1439-0329.1996.tb00846.xJung, T., Cooke, D. E. L., Blaschke, H., Duncan, J. M., & Oßwald, W. (1999). Phytophthora quercina sp. nov., causing root rot of European oaks. Mycological Research, 103(7), 785-798. doi:10.1017/s0953756298007734Jung, T., Blaschke, H., & Osswald, W. (2000). Involvement of soilborne Phytophthora species in Central European oak decline and the effect of site factors on the disease. Plant Pathology, 49(6), 706-718. doi:10.1046/j.1365-3059.2000.00521.xJung, T., Hansen, E. M., Winton, L., Oswald, W., & Delatour, C. (2002). Three new species of Phytophthora from European oak forests. Mycological Research, 106(4), 397-411. doi:10.1017/s0953756202005622Jung, T., Nechwatal, J., Cooke, D. E. L., Hartmann, G., Blaschke, M., Oßwald, W. F., … Delatour, C. (2003). Phytophthora pseudosyringae sp. nov., a new species causing root and collar rot of deciduous tree species in Europe. Mycological Research, 107(7), 772-789. doi:10.1017/s0953756203008074JUNG, T., HUDLER, G. W., JENSEN-TRACY, S. L., GRIFFITHS, H. M., FLEISCHMANN, F., & OSSWALD, W. (2006). Involvement of Phytophthora species in the decline of European beech in Europe and the USA. Mycologist, 19(04), 159. doi:10.1017/s0269915x05004052Jung, T., Jung, M. H., Cacciola, S. O., Cech, T., Bakonyi, J., Seress, D., … Scanu, B. (2017). Multiple new cryptic pathogenic Phytophthora species from Fagaceae forests in Austria, Italy and Portugal. IMA Fungus, 8(2), 219-244. doi:10.5598/imafungus.2017.08.02.02Robin, C., Desprez-Loustau, M.-L., Capron, G., & Delatour, C. (1998). First record of Phytophthora cinnamomi on cork and holm oaks in France and evidence of pathogenicity. Annales des Sciences Forestières, 55(8), 869-883. doi:10.1051/forest:19980801Hansen, E., & Delatour, C. (1999). Phytophthora species in oak forests of north-east France. ANNALS OF FOREST SCIENCE, 56(7), 539-547. doi:10.1051/forest:19990702VETTRAINO, A. M., BARZANTI, G. P., BIANCO, M. C., RAGAZZI, A., CAPRETTI, P., PAOLETTI, E., … VANNINI, A. (2002). Occurrence of Phytophthora species in oak stands in Italy and their association with declining oak trees. Forest Pathology, 32(1), 19-28. doi:10.1046/j.1439-0329.2002.00264.xVettraino, A. M., Morel, O., Perlerou, C., Robin, C., Diamandis, S., & Vannini, A. (2005). Occurrence and distribution of Phytophthora species in European chestnut stands, and their association with Ink Disease and crown decline. European Journal of Plant Pathology, 111(2), 169-180. doi:10.1007/s10658-004-1882-0Rizzo, D. M., Garbelotto, M., Davidson, J. M., Slaughter, G. W., & Koike, S. T. (2002). Phytophthora ramorum as the Cause of Extensive Mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Disease, 86(3), 205-214. doi:10.1094/pdis.2002.86.3.205Rizzo, D. M., & Garbelotto, M. (2003). Sudden oak death: endangering California and Oregon forest ecosystems. Frontiers in Ecology and the Environment, 1(4), 197-204. doi:10.1890/1540-9295(2003)001[0197:sodeca]2.0.co;2Balci, Y., & Halmschlager, E. (2003). Incidence of Phytophthora species in oak forests in Austria and their possible involvement in oak decline. Forest Pathology, 33(3), 157-174. doi:10.1046/j.1439-0329.2003.00318.xBalci, Y., & Halmschlager, E. (2003). Phytophthora species in oak ecosystems in Turkey and their association with declining oak trees. Plant Pathology, 52(6), 694-702. doi:10.1111/j.1365-3059.2003.00919.xBalci, Y., Balci, S., Eggers, J., MacDonald, W. L., Juzwik, J., Long, R. P., & Gottschalk, K. W. (2007). Phytophthora spp. Associated with Forest Soils in Eastern and North-Central U.S. Oak Ecosystems. Plant Disease, 91(6), 705-710. doi:10.1094/pdis-91-6-0705Balci, Y., Balci, S., MacDonald, W. L., & Gottschalk, K. W. (2008). Relative susceptibility of oaks to seven species ofPhytophthoraisolated from oak forest soils. Forest Pathology, 38(6), 394-409. doi:10.1111/j.1439-0329.2008.00559.xBalci, Y., Balci, S., Blair, J. E., Park, S.-Y., Kang, S., & Macdonald, W. L. (2008). Phytophthora quercetorum sp. nov., a novel species isolated from eastern and north-central USA oak forest soils. Mycological Research, 112(8), 906-916. doi:10.1016/j.mycres.2008.02.008Vannini, A., & Vettraino, A. (2011). Phytophthora cambivora. Forest Phytophthoras, 1(1). doi:10.5399/osu/fp.1.1.1811Pérez-Sierra, A., López-García, C., León, M., García-Jiménez, J., Abad-Campos, P., & Jung, T. (2013). Previously unrecorded low-temperaturePhytophthoraspecies associated withQuercusdecline in a Mediterranean forest in eastern Spain. Forest Pathology, 43(4), 331-339. doi:10.1111/efp.12037Brasier, C. (1996). Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Annales des Sciences Forestières, 53(2-3), 347-358. doi:10.1051/forest:19960217Jung, T., Orlikowski, L., Henricot, B., Abad-Campos, P., Aday, A. G., Aguín Casal, O., … Chavarriaga, D. (2015). WidespreadPhytophthorainfestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. Forest Pathology, 46(2), 134-163. doi:10.1111/efp.12239Vannini, A., Bruni, N., Tomassini, A., Franceschini, S., & Vettraino, A. M. (2013). Pyrosequencing of environmental soil samples reveals biodiversity of thePhytophthoraresident community in chestnut forests. FEMS Microbiology Ecology, 85(3), 433-442. doi:10.1111/1574-6941.12132Jankowiak, R., Stępniewska, H., Bilański, P., & Kolařík, M. (2014). Occurrence of Phytophthora plurivora and other Phytophthora species in oak forests of southern Poland and their association with site conditions and the health status of trees. Folia Microbiologica, 59(6), 531-542. doi:10.1007/s12223-014-0331-5Scanu, B., Linaldeddu, B. T., Deidda, A., & Jung, T. (2015). Diversity of Phytophthora Species from Declining Mediterranean Maquis Vegetation, including Two New Species, Phytophthora crassamura and P. ornamentata sp. nov. PLOS ONE, 10(12), e0143234. doi:10.1371/journal.pone.0143234Corcobado, T., Miranda-Torres, J. J., Martín-García, J., Jung, T., & Solla, A. (2016). Early survival of Quercus ilex subspecies from different populations after infections and co-infections by multiple Phytophthora species. Plant Pathology, 66(5), 792-804. doi:10.1111/ppa.12627Corcobado, T., Cubera, E., Pérez-Sierra, A., Jung, T., & Solla, A. (2010). First report ofPhytophthora gonapodyidesinvolved in the decline ofQuercus ilexin xeric conditions in Spain. New Disease Reports, 22, 33. doi:10.5197/j.2044-0588.2010.022.033Hansen, E. M., Reeser, P. W., & Sutton, W. (2012). PhytophthoraBeyond Agriculture. Annual Review of Phytopathology, 50(1), 359-378. doi:10.1146/annurev-phyto-081211-172946Català, S., Pérez-Sierra, A., & Abad-Campos, P. (2015). The Use of Genus-Specific Amplicon Pyrosequencing to Assess Phytophthora Species Diversity Using eDNA from Soil and Water in Northern Spain. PLOS ONE, 10(3), e0119311. doi:10.1371/journal.pone.0119311Jung, T., La Spada, F., Pane, A., Aloi, F., Evoli, M., Horta Jung, M., … Cacciola, S. O. (2019). Diversity and Distribution of Phytophthora Species in Protected Natural Areas in Sicily. Forests, 10(3), 259. doi:10.3390/f10030259Jung, T., Pérez-Sierra, A., Durán, A., Jung, M. H., Balci, Y., & Scanu, B. (2018). Canker and decline diseases caused by soil- and airborne Phytophthora species in forests and woodlands. Persoonia - Molecular Phylogeny and Evolution of Fungi, 40(1), 182-220. doi:10.3767/persoonia.2018.40.08Brasier, C. M. (2008). The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathology, 57(5), 792-808. doi:10.1111/j.1365-3059.2008.01886.xO’Brien, P. A., Williams, N., & Hardy, G. E. S. (2009). DetectingPhytophthora. Critical Reviews in Microbiology, 35(3), 169-181. doi:10.1080/10408410902831518Berlanas, C., Berbegal, M., Elena, G., Laidani, M., Cibriain, J. F., Sagües, A., & Gramaje, D. (2019). The Fungal and Bacterial Rhizosphere Microbiome Associated With Grapevine Rootstock Genotypes in Mature and Young Vineyards. Frontiers in Microbiology, 10. doi:10.3389/fmicb.2019.01142TABERLET, P., COISSAC, E., HAJIBABAEI, M., & RIESEBERG, L. H. (2012). Environmental DNA. Molecular Ecology, 21(8), 1789-1793. doi:10.1111/j.1365-294x.2012.05542.xOulas, A., Pavloudi, C., Polymenakou, P., Pavlopoulos, G. A., Papanikolaou, N., Kotoulas, G., … Iliopoulos, loannis. (2015). Metagenomics: Tools and Insights for Analyzing Next-Generation Sequencing Data Derived from Biodiversity Studies. Bioinformatics and Biology Insights, 9, BBI.S12462. doi:10.4137/bbi.s12462Vettraino, A. M., Bonants, P., Tomassini, A., Bruni, N., & Vannini, A. (2012). Pyrosequencing as a tool for the detection ofPhytophthoraspecies: error rate and risk of false Molecular Operational Taxonomic Units. Letters in Applied Microbiology, 55(5), 390-396. doi:10.1111/j.1472-765x.2012.03310.xCatalà, S., Berbegal, M., Pérez-Sierra, A., & Abad-Campos, P. (2016). Metabarcoding and development of new real-time specific assays revealPhytophthoraspecies diversity in holm oak forests in eastern Spain. Plant Pathology, 66(1), 115-123. doi:10.1111/ppa.12541Prigigallo, M. I., Abdelfattah, A., Cacciola, S. O., Faedda, R., Sanzani, S. M., Cooke, D. E. L., & Schena, L. (2016). Metabarcoding Analysis of Phytophthora Diversity Using Genus-Specific Primers and 454 Pyrosequencing. Phytopathology®, 106(3), 305-313. doi:10.1094/phyto-07-15-0167-rScibetta, S., Schena, L., Chimento, A., Cacciola, S. O., & Cooke, D. E. L. (2012). A molecular method to assess Phytophthora diversity in environmental samples. Journal of Microbiological Methods, 88(3), 356-368. doi:10.1016/j.mimet.2011.12.012Burgess, T. I., McDougall, K. L., Scott, P. M., Hardy, G. E. S., & Garnas, J. (2018). Predictors of Phytophthora diversity and community composition in natural areas across diverse Australian ecoregions. Ecography, 42(3), 565-577. doi:10.1111/ecog.03904Mora-Sala, B., Berbegal, M., & Abad-Campos, P. (2018). The Use of qPCR Reveals a High Frequency of Phytophthora quercina in Two Spanish Holm Oak Areas. Forests, 9(11), 697. doi:10.3390/f9110697Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389Park, J., Park, B., Veeraraghavan, N., Jung, K., Lee, Y.-H., Blair, J. E., … Kang, S. (2008). Phytophthora Database: A Forensic Database Supporting the Identification and Monitoring of Phytophthora. Plant Disease, 92(6), 966-972. doi:10.1094/pdis-92-6-0966Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797. doi:10.1093/nar/gkh340Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729. doi:10.1093/molbev/mst197Felsenstein, J. (1985). CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP. Evolution, 39(4), 783-791. doi:10.1111/j.1558-5646.1985.tb00420.xGlynou, K., Nam, B., Thines, M., & Maciá-Vicente, J. G. (2017). Facultative root-colonizing fungi dominate endophytic assemblages in roots of nonmycorrhizal Microthlaspi species. New Phytologist, 217(3), 1190-1202. doi:10.1111/nph.14873Dhariwal, A., Chong, J., Habib, S., King, I. L., Agellon, L. B., & Xia, J. (2017). MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Research, 45(W1), W180-W188. doi:10.1093/nar/gkx295Ruiz Gómez, F. J., Navarro-Cerrillo, R. M., Pérez-de-Luque, A., Oβwald, W., Vannini, A., & Morales-Rodríguez, C. (2019). Assessment of functional and structural changes of soil fungal and oomycete communities in holm oak declined dehesas through metabarcoding analysis. Scientific Reports, 9(1). doi:10.1038/s41598-019-41804-yRedondo, M. A., Boberg, J., Stenlid, J., & Oliva, J. (2018). Contrasting distribution patterns between aquatic and terrestrial Phytophthora species along a climatic gradient are linked to functional traits. The ISME Journal, 12(12), 2967-2980. doi:10.1038/s41396-018-0229-3BRASIER, C. M., ROBREDO, F., & FERRAZ, J. F. P. (1993). Evidence forPhytophthora cinnamomiinvolvement in Iberian oak decline. Plant Pathology, 42(1), 140-145. doi:10.1111/j.1365-3059.1993.tb01482.xGallego, B. F. J., de Algaba, A. P., & Fernandez-Escobar, R. (1999). Etiology of oak decline in Spain. Forest Pathology, 29(1), 17-27. doi:10.1046/j.1439-0329.1999.00128.xSANCHEZ, M. E., CAETANO, P., FERRAZ, J., & TRAPERO, A. (2002). Phytophthora disease of Quercus ilex in south-western Spain. Forest Pathology, 32(1), 5-18. doi:10.1046/j.1439-0329.2002.00261.xDe Sampaio e Paiva Camilo-Alves, C., da Clara, M. I. E., & de Almeida Ribeiro, N. M. C. (2013). Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: a review. European Journal of Forest Research, 132(3), 411-432. doi:10.1007/s10342-013-0688-zSerrano, M. S., De Vita, P., Fernández-Rebollo, P., & Sánchez Hernández, M. E. (2011). Calcium fertilizers induce soil suppressiveness to Phytophthora cinnamomi root rot of Quercus ilex. European Journal of Plant Pathology, 132(2), 271-279. doi:10.1007/s10658-011-9871-6Mora-Sala, B., Abad-Campos, P., & Berbegal, M. (2018). Response of Quercus ilex seedlings to Phytophthora spp. root infection in a soil infestation test. European Journal of Plant Pathology, 154(2), 215-225. doi:10.1007/s10658-018-01650-6Jung, T., & Burgess, T. I. (2009). Re-evaluation of Phytophthora citricola isolates from multiple woody hosts in Europe and North America reveals a new species, Phytophthora plurivora sp. nov. Persoonia - Molecular Phylogeny and Evolution of Fungi, 22(1), 95-110. doi:10.3767/003158509x442612Ioos, R., Laugustin, L., Rose, S., Tourvieille, J., & Tourvieille de Labrouhe, D. (2007). Development of a PCR test to detect the downy mildew causal agent Plasmopara halstedii in sunflower seeds. Plant Pathology, 56(2), 209-218. doi:10.1111/j.1365-3059.2006.01500.xZhao, J., Wang, X. J., Chen, C. Q., Huang, L. L., & Kang, Z. S. (2007). A PCR-Based Assay for Detection of Puccinia striiformis f. sp. tritici in Wheat. Plant Disease, 91(12), 1669-1674. doi:10.1094/pdis-91-12-1669Alaei, H., Baeyen, S., Maes, M., Höfte, M., & Heungens, K. (2009). Molecular detection of Puccinia horiana in Chrysanthemum x morifolium through conventional and real-time PCR. Journal of Microbiological Methods, 76(2), 136-145. doi:10.1016/j.mimet.2008.10.001Mrázková, M., Černý, K., Tomšovský, M., Strnadová, V., Gregorová, B., Holub, V., … Hejná, M. (2013). Occurrence of Phytophthora multivora and Phytophthora plurivora in the Czech Republic. Plant Protection Science, 49(No. 4), 155-164. doi:10.17221/74/2012-pp

    Survey of Oomycetes Associated with Root and Crown Rot of Almond in Spain and Pathogenicity of Phytophthora niederhauserii and Phytopythium vexans to `Garnem¿ Rootstock

    Get PDF
    [EN] From 2018 to 2020, surveys of oomycetes associated with root and crown rot of almond (Prunus dulcis) were conducted on diseased young almond trees in commercial orchards and nurseries in six provinces of Spain. A total of 104 oomycete isolates were obtained from plant and soil samples, which h were identified by sequencing the internal transcribed spacer (ITS) region of the ribosomal DNA. Diverse species belonging to the genera Globisporangium, Phytophthora, Phytopythium and Pythium were found, Phytopythium vexans and Phytophthora niederhauserii being the most frequent. The pathogenicity of these two species to one-year-old almond seedlings of 'Garnem' (P. dulcis x P. persica) rootstock was studied. All seedlings inoculated with Pp. vexans and Ph. niederhauserii isolates showed severe symptoms at the late stage of the pathogenicity test (defoliation, wilting and dieback) and several plants died. Some isolates of Ph. niederhauserii significantly reduced the dry weight of the roots compared with the control, but this effect was not observed in seedlings inoculated with Pp. vexans. These results provide new information about the oomycete species present in almond crops in Spain and highlight the importance of carrying out frequent phytosanitary surveys for a better knowledge of potential risks posed by these soil-borne pathogens.This research study was funded by INIA (Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria), Spain, through projects RTA2017-00009-C04-01 and RTA2017-00009-C04-04, and matching funds from the ERDF (European Regional Development Fund) and Grant PID2020-114648RR-C33 funded by MCIN/AEI/10.13039/501100011033. Francisco Beluzán was supported by Agencia Nacional de Investigación y Desarrollo/Subdirección de Capital Humano/Doctorado Becas Chile en el Extranjero/72200145. Xavier Miarnau was supported by the CERCA Program, Generalitat de Catalunya.Beluzán Flores, FJ.; Miarnau, X.; Torguet, L.; Armengol Fortí, J.; Abad Campos, P. (2022). Survey of Oomycetes Associated with Root and Crown Rot of Almond in Spain and Pathogenicity of Phytophthora niederhauserii and Phytopythium vexans to `Garnem¿ Rootstock. Agriculture. 12(2):1-15. https://doi.org/10.3390/agriculture12020294S11512

    The Use of qPCR Reveals a High Frequency of Phytophthora quercina in Two Spanish Holm Oak Areas

    Full text link
    [EN] The struggling Spanish holm oak woodland situation associated with Phytophthora root rot has been studied for a long time. Phytophthora cinnamomi is considered the main, but not the only species responsible for the decline scenario. This study veri¿es the presence and/or detection of Phytophthora species in two holm oak areas of Spain (southwestern ¿dehesas¿ and northeastern woodland)usingdifferentisolationanddetectionapproaches. Directisolationandbaitingmethodsin declining and non-declining holm oak trees revealed Phytophthoracambivora, Phytophthoracinnamomi, Phytophthoragonapodyides, Phytophthoramegasperma, and Phytophthorapseudocryptogea in the dehesas, while in the northeastern woodland, no Phytophthora spp. were recovered. Statistical analyses indicated that there was not a signi¿cant relationship between the Phytophthora spp. isolation frequencyandthediseaseexpressionoftheholmoakstandsinthedehesas. Phytophthoraquercinaand P.cinnamomiTaqManreal-timePCRprobesshowedthatbothP.cinnamomiandP.quercinaareinvolved in the holm oak decline in Spain, but P. quercina was detected in a higher frequency than P. cinnamomi in both studied areas. Thus, this study demonstrates that molecular approaches complement direct isolation techniques in natural and seminatural ecosystem surveys to determine the presence and distribution of Phytophthora spp. This is the ¿rst report of P. pseudocryptogea in Europe and its role in the holm oak decline should be further studied.This research was supported by funding from the project AGL2011-30438-C02-01 (Ministerio de Economia y Competitividad, Spain).Mora-Sala, B.; Berbegal Martinez, M.; Abad Campos, P. (2018). The Use of qPCR Reveals a High Frequency of Phytophthora quercina in Two Spanish Holm Oak Areas. Forests. 9(11):1-14. https://doi.org/10.3390/f9110697S11491

    First Report of Diaporthe amygdali Associated with Twig Canker and Shoot Blight of Nectarine in Spain

    Full text link
    Beluzán-Flores, FJ.; DIEGO OLMO GARCIA; León Santana, M.; Abad Campos, P.; Armengol Fortí, J. (2021). First Report of Diaporthe amygdali Associated with Twig Canker and Shoot Blight of Nectarine in Spain. Plant Disease. 105(10):1-1. https://doi.org/10.1094/PDIS-10-20-2283-PDNS111051

    Susceptibility of Almond (Prunus dulcis) Cultivars to Twig Canker and Shoot Blight Caused by Diaporthe amygdali

    Get PDF
    Twenty-five almond cultivars were assessed for susceptibility to Diaporthe amygdali, causal agent of twig canker and shoot blight disease. In laboratory experiments, growing twigs were inoculated with four D. amygdali isolates. Moreover, growing shoots of almond cultivars grafted onto INRA ‘GF-677’ rootstock were used in 4-year field inoculations with one D. amygdali isolate. In both types of experiments, inoculum consisted of agar plugs with mycelium, which were inserted underneath the bark, and the lesion lengths caused by the fungus were measured. Necrotic lesions were observed in the inoculated almond cultivars in both laboratory and field tests, confirming the susceptibility of all evaluated cultivars to all inoculated isolates of D. amygdali. Cultivars were grouped as susceptible or very susceptible according to a cluster analysis. The relationship between some agronomic traits and cultivar susceptibility was also investigated. Blooming and ripening times were found to be relevant variables explaining cultivar performance related to D. amygdali susceptibility. Late and very late blooming and early and medium ripening cultivars were highly susceptible to D. amygdali. Our results may provide valuable information that could assist in ongoing breeding programs of this crop and in the selection of cultivars for new almond plantations.info:eu-repo/semantics/acceptedVersio

    Survey, identification, and characterization of Cylindrocarpon-like asexual morphs in Spanish forest nurseries

    Full text link
    [EN] Cylindrocarpon-like asexual morphs infect herbaceous and woody plants, mainly in agricultural scenarios, but also in forestry systems. The aim of the present study was to characterize a collection of Cylindrocarpon-like isolates recovered from the roots of a broad range of forest hosts from nurseries showing decline by morphological and molecular studies. Between 2009 and 2012, 17 forest nurseries in Spain were surveyed and a total of 103 Cylindrocarpon-like isolates were obtained. Isolates were identified based on DNA sequences of the partial gene regions histone H3 (his3). For the new species, the internal transcribed spacer and intervening 5.8S nrRNA gene (ITS) region, beta-tubulin (tub2), and translation elongation factor 1-alpha (tefl) were also used to determine their phylogenetic position. Twelve species belonging to the genera Cylindrodendrum, Dactylonectria, and Ilyonectria were identified from damaged roots of 15 different host genera. The species C. alicantinum, D. macrodidyma, D. novozelandica, D. pauciseptata, D. pinicola, D. torresensis, I. capensis, I. cyclaminicola, I. liriodendri, I. pseudodestructans, I. robusta, and I. rufa were identified. In addition, two Dactylonectria species (D. hispanica sp. nov. and D. valentina sp. nov.), one Ilyonectria species (I. ilicicola sp. nov.), and one Neonectria species (N. quercicola sp. nov.) are newly described. The present study demonstrates the prevalence of this fungal group associated with seedlings of diverse hosts showing decline symptoms in forest nurseries in Spain.This research was supported by funding from the Spanish project AGL2011-30438-C02-01 (Ministerio de Economia y Competitividad, Spain). It was also funded by Portuguese national funds through Fundacao para a Ciencia e a Tecnologia grant SFRH/BPD/84508/2012 for Ana Cabral and FCT Unit funding UID/AGR/04129/2013). C. Agusti-Brisach is the holder of a 'Juan de la Cierva-Formacion' fellowship from MINECO (Spain).Mora-Sala, B.; Cabral, A.; León Santana, M.; Agusti Brisach, C.; Armengol Fortí, J.; Abad Campos, P. (2018). Survey, identification, and characterization of Cylindrocarpon-like asexual morphs in Spanish forest nurseries. Plant Disease. 102(11):2083-2100. https://doi.org/10.1094/PDIS-01-18-0171-RES208321001021

    Characterization of Cylindrodendrum, Dactylonectria and Ilyonectria isolates associated with loquat decline in Sapin, with description of Cylindrodendrum alicantinum sp. nov

    Full text link
    [EN] Thirty-one loquat orchards (Eriobotrya japonica 'Algerie') with plants exhibiting decline symptoms were surveyed between 2004 and 2007 in the province of Alicante, Spain. Twenty-eight representative isolates with Cylindrocarpon-like asexual morphs recovered from affected roots were included in this study, with the objective to characterize them by means of phenotypical characterization, DNA analysis and pathogenicity tests. Dactylonectria alcacerensis, D. torresensis and Ilyonectria robusta were identified based on morphological and cultural characteristics as well as DNA sequence data for part of histone H3, with D. torresensis the most frequent species. All of them are reported for the first time on loquat, and I. robusta is reported for the first time in Spain. In addition, one species is newly described, Cylindrodendrum alicantinum. Pathogenicity tests with representative isolates showed that these species were able to induce typical root rot disease symptoms, affecting plant development or even leading to plant death. This research demonstrates the association of species belonging to the genera Cylindrodendrum, Dactylonectria and Ilyonectria with root rot of loquat and loquat decline in the province of Alicante (eastern Spain). This information should be considered for the improvement of the current management strategies against these soil-borne pathogens when establishing new loquat plantations or introducing new susceptible fruit crops in the region.We acknowledge Dr. L. Lombard and Prof. Dr. P.W. Crous (CBS-KNAW Fungal Biodiversity Centre, The Netherlands) for valuable discussions and data sharing. This work was funded by the Cooperativa Agricola de Callosa d'En Sarria (Alicante, Spain). We would like to thank E. Soler for their technical assistance.Agustí Brisach, C.; Cabral, A.; González Domínguez, E.; Perez Y Sierra, AM.; León Santana, M.; Abad Campos, MP.; García Jiménez, J.... (2016). Characterization of Cylindrodendrum, Dactylonectria and Ilyonectria isolates associated with loquat decline in Sapin, with description of Cylindrodendrum alicantinum sp. nov. EUROPEAN JOURNAL OF PLANT PATHOLOGY. 145(1):103-118. doi:10.1007/s10658-015-0820-7S1031181451Agustí-Brisach, C., & Armengol, J. (2013). Black-foot disease of grapevine: an update on taxonomy, epidemiology and management strategies. Phytopathologia Mediterranea, 52, 245–261.Agustí-Brisach, C., Gramaje, D., García-Jiménez, J., & Armengol, J. (2013a). Detection of Ilyonectria spp. in the grapevine nursery propagation process in Spain. European Journal of Plant Pathology, 137, 103–112.Agustí-Brisach, C., Gramaje, D., García-Jiménez, J., & Armengol, J. (2013b). Detection of black-foot and Petri disease pathogens in natural soils of grapevine nurseries and vineyards using bait plants. Plant and Soil, 364, 5–13.Aiello, D., Guarnaccia, V., Vitale, A., Cirvilleri, G., Granata, G., Epifani, F., Perrone, G., Polizzi, G., Groenewald, J. Z., & Crous, P. W. (2014). Ilyonectria palmarum sp. nov. causing dry basal stem rot of Arecaceae. European Journal of Plant Pathology, 138, 347–359.Booth, C. D. (1966). The genus Cylindrocarpon. Mycological Papers (CMI), 104, 1–56.Brayford, D. (1993). Cylindrocarpon. In L. L. Singleton, J. D. Mihail, & C. M. Rush (Eds.), Methods for research on soilborne phytopathogenic fungi (pp. 103–106). St. Paul: APS Press.Cabral, A., Groenewald, J. Z., Rego, C., Oliveira, H., & Crous, P. W. (2012a). Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex. Mycological Progress, 11, 655–688.Cabral, A., Rego, C., Nascimento, T., Oliveira, H., Groenewald, J. Z., & Crous, P. W. (2012b). Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biology, 116, 62–80.Calabrese, F. (2006). Origen de la especie. In M. Agustí, C. Reig, & P. Undurraga (Eds.), El cultivo del níspero japonés. España: Pontificia Universidad Católica de Valparaíso, Chile and Universidad Politécnica de Valencia.Chaverri, P., Salgado, C., Hirooka, Y., Rossman, A. Y., & Samuels, G. J. (2011). Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs. Studies in Mycology, 68, 57–78.Crous, P. W., Gams, W., Stalpers, J. A., Robert, V., & Stegehuis, G. (2004a). MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology, 50, 19–22.Crous, P. W., Groenewald, J. Z., Risede, J. M., & Hywel-Jones, N. L. (2004b). Calonectria species and their Cylindrocladium anamorphs: species with sphaeropedunculate vesicles. Studies in Mycology, 50, 415–429.Crous, P.W., Verkleij, G.J.M., Groenewald, J.Z., Samson, R.A. (Eds.) (2009). Fungal biodiversity. CBS laboratory manual series 1. Centraalbureau voor Schimmelcultures, Utrecht.Dhingra, O. D., & Sinclair, J. B. (1995). Basic plant pathology methods (2nd ed.). Boca Raton: CRC Press.Erper, I., Agustí-Brisach, C., Tunali, B., & Armengol, J. (2013). Characterization of root rot disease of kiwifruit in the Black Sea region of Turkey. European Journal of Plant Pathology, 136, 291–300.Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basiodiomycetes-applications to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.Glass, N. L., & Donaldson, G. (1995). Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.González-Domínguez, E., Pérez-Sierra, A., Álvarez, L. A., Abad-Campos, P., Armengol, J., & García-Jiménez, J. (2008). Ethiology of decline of loquat (Eriobotrya japonica) in eastern Spain. Journal of Plant Pathology, 90(2, supplement), 179.González-Domínguez, E., Pérez-Sierra, A., Álvarez, L. A., León, M., Abad-Campos, P., Armengol, J., & García-Jiménez, J. (2009). Agentes fúngicos presentes en plantaciones de nísperos (Eriobotrya japonica Lindl.) con síntomas de decaimiento en la provincia de Alicante. Boletín Sanidad Vegetal Plagas, 35, 453–467.González-Domínguez, E., Rossi, V., Armengol, J., & García-Jiménez, J. (2013). Effect of environmental factors on mycelial growth and conidial germination of Fusicladium eriobotryae, and the infection of loquat leaves. Plant Disease, 97, 1331–1338.González-Domínguez, E., Armengol, J., & Rossi, V. (2014). Development and validation of a weather-based model for predicting infection of loquat fruit by Fusicladium eriobotryae. Plos One, 9, e107547.Halleen, F., Schroers, H. J., Groenewald, J. Z., & Crous, P. W. (2004). Novel species of Cylindrocarpon (Neonectria) and Campylocarpon gen. nov. associated with black-foot disease of grapevines (Vitis spp). Studies in Mycology, 50, 431–455.Halleen, F., Fourie, P. H., & Crous, P. W. (2006). A review of black-foot disease of grapevine. Phytopathologia Mediterranea, 45, S55–S67.Janick, J. (2011). Predictions for loquat improvement in the next decade. Acta Horticulturae, 887, 25–30.Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948.Lin, S. Q. (2007). World loquat production and research with special reference to China. Acta Horticulturae, 750, 37–44.Lombard, L., Van der Merwe, N. A., Groenewald, J. Z., & Crous, P. W. (2014). Lineages in Nectriaceae: Re-evaluating the generic status of Ilyonectria and allied genera. Phytopathologia Mediterranea, 53, 515–532.Nirenberg, H. (1976). Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium-Sektion Liseola. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft, 169, 1–117.O’Donnell, K., & Cigelnik, E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution, 7, 103–116.Petit, E., & Gubler, W. D. (2005). Characterization of Cylindrocarpon species, the cause of black foot disease of grapevine in California. Plant Disease, 89, 1051–1059.Rayner, R. W. (1970). A mycological colour chart. Kew: British Mycological Society and CAB International Mycological Institute.Read, N. D., Lichius, A., Shoji, J. Y., & Goryachev, A. B. (2009). Self-signalling and self-fusion in filamentous fungi. Current Opinion in Microbiology, 12, 608–615.Reig, C., Farina, V., Volpe, G., Mesejo, C., Martínez-Fuentes, A., Barone, F., Calabrese, F., & Agustí, M. (2012). Giberellic acid and flower bud development in loquat (Eriobotrya japonica Lindl.). Scientia Horticulturae, 129, 27–31.Samuels, G. J., & Brayford, D. (1990). Variation in Nectria radicicola and its anamorph, Cylindrocarpon destructans. Mycological Research, 94, 433–442.Sánchez-Hernández, M. E., Ruiz-Dávila, A., Pérez de Algaba, A., Blanco-López, M. A., & Trapero-Casas, A. (1998). Occurrence and etiology of death of young olive tres in southern Spain. European Journal of Plant Pathology, 104, 347–357.Sánchez-Torres, P., Hinarejos, R., & Tuset, J. J. (2009). Characterization and pathogenicity of Fusicladium eriobotryae, the fungal pathogen responsible for loquat scab. Plant Disease, 93, 1151–1157.Schroers, H. J., Zerjav, M., Munda, A., Halleen, F., & Crous, P. W. (2008). Cylindrocarpon pauciseptatum sp. nov., with notes on Cylindrocarpon species with wide, predominantly 3-septate macroconidia. Mycological Research, 112, 82–92.Soler, E., Martínez-Calvo, J., Llácer, G., & Badenes, M. L. (2007). Loquat in Spain: production and marketing. Acta Horticulturae, 750, 45–47.Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary 16 genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.Tewoldemedhin, Y. T., Mazzola, M., Mostert, L., & McLeod, A. (2011). Cylindrocarpon species associated with apple tree roots in South Africa and their quantification using real-time PCR. European Journal of Plant Pathology, 129, 637–651.Vitale, A., Aiello, D., Guarnaccia, V., Perrone, G., Stea, G., & Polizzi, G. (2012). First report of root rot caused by Ilyonectria (=Neonectria) macrodidyma on avocado (Persea americana) in Italy. Journal of Phytopathology, 160, 156–159.Zhuang, W. Y., Nong, Y., & Luo, J. (2007). New species and new Chinese records of Bionectriaceae and Nectriaceae (Hypocreales, Ascomycetes) from Hubei, China. Fungal Diversity, 24, 347–357

    Survey of diseases caused by Fusarium spp. on palm trees in the Canary Islands

    Get PDF
    Between 2006 and 2007, palm trees growing in both gardens and public parks and natural palm groves in the Canary Islands (Spain), and showing symptoms of wilt and dieback, were surveyed. Isolates were recovered from affected tissues of the crowns, leaves and vascular fragments on potato dextrose agar (PDA). After incubation, the Fusarium spp. colonies recovered were single-spored. They were transferred to PDA and Spezieller Nahrstoffarmer Agar (SNA) for morphological identification. Identification of Fusarium oxysporum f. sp. Canariensis was confirmed by PCR with the specific primers HK66 and HK67, which amplified a fragment of 567 bp. Fusarium wilt caused by F. oxysporum f. sp. canariensis was found on 54 Phoenix canariensis trees growing on four islands: Gran Canaria, Fuerteventura, La Palma and Tenerife. F. proliferatum occurred on fifteen palms (10 P. canariensis, 1 P. dactylifera, 3 Roystonea regia and 1 Veitchia joannis) located in Gran Canaria, Fuerteventura and Tenerife. Both these Fusarium species were found only in diseased palms from gardens and public parks, but not in natural palm groves. The results show that Fusarium wilt of P. canariensis is common in the Canary Islands and for the first time report F. proliferatum affecting different palm species in those islands

    Identification and characterization of Diaporthe spp. associated with twig cankers and shoot blight of almonds in Spain

    Get PDF
    [EN] Two hundred and twenty-fiveDiaportheisolates were collected from 2005 to 2019 in almond orchards showing twig cankers and shoot blight symptoms in five different regions across Spain. Multilocus DNA sequence analysis with five loci (ITS,tub,tef-1 alpha,calandhis), allowed the identification of four knownDiaporthespecies, namely:D. amygdali,D. eres,D. foeniculinaandD. phaseolorum. Moreover, a novel phylogenetic species,D. mediterranea, was described.Diaportheamygdaliwas the most prevalent species, due to the largest number of isolates (85.3%) obtained from all sampled regions. The second most frequent species wasD. foeniculina(10.2%), followed byD. mediterranea(3.6%),D.eresandD. phaseolorum, each with only one isolate. Pathogenicity tests were performed using one-year-old almond twigs cv. Vayro and representative isolates of the different species. Except forD. foeniculinaandD. phaseolorum, allDiaporthespecies were able to cause lesions significantly different from those developed on the uninoculated controls.Diaporthe mediterraneacaused the most severe symptoms. These results confirmD. amygdalias a key pathogen of almonds in Spain. Moreover, the new species,D. mediterranea, should also be considered as a potential important causal agent of twig cankers and shoot blight on this crop.Research funded by the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), grants RTA2017-00009-C04-01, -02, -03 and -04 and with matching funds from the European Regional Development Fund (ERDF). G. Elena and C. Agusti-Brisach were supported by the Spanish post-doctoral grants "Juan de la Cierva-Formacion" and "Juan de la Cierva-Incorporacion", respectively. J. Luque and X. Miarnau were partially supported by the CERCA program, Generalitat de Catalunya. D. Gramaje was supported by the Ramon y Cajal program, Spanish Government (RYC-2017-23098).León Santana, M.; Berbegal Martinez, M.; Rodríguez-Reina, JM.; Elena, G.; Abad Campos, P.; Ramón-Albalat, A.; Olmo, D.... (2020). Identification and characterization of Diaporthe spp. associated with twig cankers and shoot blight of almonds in Spain. Agronomy. 10(8):1-23. https://doi.org/10.3390/agronomy10081062S123108Food and Agriculture Organization of the United Nationshttp://www.fao.org/faostat/es/#datDiogo, E. L. F., Santos, J. M., & Phillips, A. J. L. (2010). Phylogeny, morphology and pathogenicity of Diaporthe and Phomopsis species on almond in Portugal. Fungal Diversity, 44(1), 107-115. doi:10.1007/s13225-010-0057-xTuset, J. J., & Portilla, M. A. T. (1989). Taxonomic status of Fusicoccum amygdali and Phomopsis amygdalina. Canadian Journal of Botany, 67(5), 1275-1280. doi:10.1139/b89-168TUSET, J. J., HINAREJOS, C., & PORTILLA, M. T. (1997). Incidence of Phomopsis amygdali, Botryosphaeria berengeriana and Valsa cincta diseases in almond under different control strategies. EPPO Bulletin, 27(4), 449-454. doi:10.1111/j.1365-2338.1997.tb00664.xUdayanga, D., Liu, X., Crous, P. W., McKenzie, E. H. C., Chukeatirote, E., & Hyde, K. D. (2012). A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis). Fungal Diversity, 56(1), 157-171. doi:10.1007/s13225-012-0190-9Rossman, A. Y., Adams, G. C., Cannon, P. F., Castlebury, L. A., Crous, P. W., Gryzenhout, M., … Walker, D. M. (2015). Recommendations of generic names in Diaporthales competing for protection or use. IMA Fungus, 6(1), 145-154. doi:10.5598/imafungus.2015.06.01.09Gomes, R. R., Glienke, C., Videira, S. I. R., Lombard, L., Groenewald, J. Z., & Crous, P. W. (2013). Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia - Molecular Phylogeny and Evolution of Fungi, 31(1), 1-41. doi:10.3767/003158513x666844Gao, Y., Liu, F., Duan, W., Crous, P. W., & Cai, L. (2017). Diaporthe is paraphyletic. IMA Fungus, 8(1), 153-187. doi:10.5598/imafungus.2017.08.01.11Dissanayake, A. (2017). The current status of species in Diaporthe. Mycosphere, 8(5), 1106-1156. doi:10.5943/mycosphere/8/5/5Santos, L., Alves, A., & Alves, R. (2017). Evaluating multi-locus phylogenies for species boundaries determination in the genusDiaporthe. PeerJ, 5, e3120. doi:10.7717/peerj.3120Lawrence, D. P., Travadon, R., & Baumgartner, K. (2015). Diversity of Diaporthe species associated with wood cankers of fruit and nut crops in northern California. Mycologia, 107(5), 926-940. doi:10.3852/14-353Gramaje, D., Agustí-Brisach, C., Pérez-Sierra, A., Moralejo, E., Olmo, D., Mostert, L., … Armengol, J. (2012). Fungal trunk pathogens associated with wood decay of almond trees on Mallorca (Spain). Persoonia - Molecular Phylogeny and Evolution of Fungi, 28(1), 1-13. doi:10.3767/003158512x626155GARDES, M., & BRUNS, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2), 113-118. doi:10.1111/j.1365-294x.1993.tb00005.xTravadon, R., Lawrence, D. P., Rooney-Latham, S., Gubler, W. D., Wilcox, W. F., Rolshausen, P. E., & Baumgartner, K. (2015). Cadophora species associated with wood-decay of grapevine in North America. Fungal Biology, 119(1), 53-66. doi:10.1016/j.funbio.2014.11.002O’Donnell, K., & Cigelnik, E. (1997). Two Divergent Intragenomic rDNA ITS2 Types within a Monophyletic Lineage of the FungusFusariumAre Nonorthologous. Molecular Phylogenetics and Evolution, 7(1), 103-116. doi:10.1006/mpev.1996.0376Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61(4), 1323-1330. doi:10.1128/aem.61.4.1323-1330.1995Weir, B. S., Johnston, P. R., & Damm, U. (2012). The Colletotrichum gloeosporioides species complex. Studies in Mycology, 73, 115-180. doi:10.3114/sim0011Udayanga, D., Castlebury, L. A., Rossman, A. Y., & Hyde, K. D. (2014). Species limits in Diaporthe: molecular re-assessment of D. citri, D. cytosporella, D. foeniculina and D. rudis. Persoonia - Molecular Phylogeny and Evolution of Fungi, 32(1), 83-101. doi:10.3767/003158514x679984Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. doi:10.1093/nar/22.22.4673Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547-1549. doi:10.1093/molbev/msy096Vaidya, G., Lohman, D. J., & Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27(2), 171-180. doi:10.1111/j.1096-0031.2010.00329.xRonquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., … Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology, 61(3), 539-542. doi:10.1093/sysbio/sys029Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312-1313. doi:10.1093/bioinformatics/btu033Felsenstein, J. (1985). CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP. Evolution, 39(4), 783-791. doi:10.1111/j.1558-5646.1985.tb00420.xDuthie, J. A. (1997). Models of the Response of Foliar Parasites to the Combined Effects of Temperature and Duration of Wetness. Phytopathology®, 87(11), 1088-1095. doi:10.1094/phyto.1997.87.11.1088Agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.2-3http://CRAN.R-project.org/package=agricolaeVan Niekerk, J. M., Groenewald, J. Z., Farr, D. F., Fourie, P. H., Halleen, F., & Crous, P. W. (2005). Reassessment ofPhomopsisspecies on grapevines. Australasian Plant Pathology, 34(1), 27. doi:10.1071/ap04072Lesuthu, P., Mostert, L., Spies, C. F. J., Moyo, P., Regnier, T., & Halleen, F. (2019). Diaporthe nebulae sp. nov. and First Report of D. cynaroidis, D. novem, and D. serafiniae on Grapevines in South Africa. Plant Disease, 103(5), 808-817. doi:10.1094/pdis-03-18-0433-reGuarnaccia, V., Groenewald, J. Z., Woodhall, J., Armengol, J., Cinelli, T., Eichmeier, A., … Crous, P. W. (2018). Diaporthe diversity and pathogenicity revealed from a broad survey of grapevine diseases in Europe. Persoonia - Molecular Phylogeny and Evolution of Fungi, 40(1), 135-153. doi:10.3767/persoonia.2018.40.06Varjas, V., Vajna, L., Izsépi, F., Nagy, G., & Pájtli, É. (2017). First Report of Phomopsis amygdali Causing Twig Canker on Almond in Hungary. Plant Disease, 101(9), 1674. doi:10.1094/pdis-03-17-0365-pdnMichailides, T. J., & Thomidis, T. (2006). First Report of Phomopsis amygdali Causing Fruit Rot on Peaches in Greece. Plant Disease, 90(12), 1551-1551. doi:10.1094/pd-90-1551cLópez-Moral, A., Lovera, M., Raya, M. del C., Cortés-Cosano, N., Arquero, O., Trapero, A., & Agustí-Brisach, C. (2020). Etiology of Branch Dieback and Shoot Blight of English Walnut Caused by Botryosphaeriaceae and Diaporthe Species in Southern Spain. Plant Disease, 104(2), 533-550. doi:10.1094/pdis-03-19-0545-reAdaskaveg, J. E., Förster, H., & Connell, J. H. (1999). First Report of Fruit Rot and Associated Branch Dieback of Almond in California Caused by a Phomopsis Species Tentatively Identified as P. amygdali. Plant Disease, 83(11), 1073-1073. doi:10.1094/pdis.1999.83.11.1073cFarr, D. F., Castlebury, L. A., & Pardo-Schultheiss, R. A. (1999). Phomopsis amygdali causes peach shoot blight of cultivated peach trees in the southeastern United States. Mycologia, 91(6), 1008-1015. doi:10.1080/00275514.1999.12061111Mostert, L., Crous, P. W., Kang, J.-C., & Phillips, A. J. L. (2001). Species of Phomopsis and a Libertella sp. occurring on grapevines with specific reference to South Africa: morphological, cultural, molecular and pathological characterization. Mycologia, 93(1), 146-167. doi:10.1080/00275514.2001.12061286KANEMATSU, S., YOKOYAMA, Y., KOBAYASHI, T., KUDO, A., & OHTSU, Y. (1999). Taxonomic Reassessment of the Causal Fungus of Peach Fusicoccum Canker in Japan. Japanese Journal of Phytopathology, 65(5), 531-536. doi:10.3186/jjphytopath.65.531Dai, F. M., Zeng, R., & Lu, J. P. (2012). First Report of Twig Canker on Peach Caused by Phomopsis amygdali in China. Plant Disease, 96(2), 288-288. doi:10.1094/pdis-04-11-0321Bai, Q., Zhai, L., Chen, X., Hong, N., Xu, W., & Wang, G. (2015). Biological and Molecular Characterization of Five Phomopsis Species Associated with Pear Shoot Canker in China. Plant Disease, 99(12), 1704-1712. doi:10.1094/pdis-03-15-0259-reMeng, L., Yu, C., Wang, C., & Li, G. (2018). First Report of Diaporthe amygdali Causing Walnut Twig Canker in Shandong Province of China. Plant Disease, 102(9), 1859-1859. doi:10.1094/pdis-01-18-0192-pdnSantos, L. (2017). Diaporthe species on Rosaceae with descriptions of D. pyracanthae sp. nov. and D. malorum sp. nov. Mycosphere, 8(5), 485-511. doi:10.5943/mycosphere/8/5/
    corecore