57 research outputs found

    Vertical pattern of organic matter decomposability in cryoturbated permafrost-affected soils

    Get PDF
    Permafrost thaw will release additional carbon dioxide into the atmosphere resulting in a positive feedback to climate change. However, the mineralization dynamics of organic matter (OM) stored in permafrost-affected soils remain unclear. We used physical soil fractionation, radiocarbon measurements, incubation experiments, and a dynamic decomposition model to identify distinct vertical pattern in OM decomposability. The observed differences reflect the type of OM input to the subsoil, either by cryoturbation or otherwise, e.g. by advective water-borne transport of dissolved OM. In non-cryoturbated subsoil horizons, most OM is stabilized at mineral surfaces or by occlusion in aggregates. In contrast, pockets of OM-rich cryoturbated soil contain sufficient free particulate OM for microbial decomposition. After thaw, OM turnover is as fast as in the upper active layer. Since cryoturbated soils store ca. 450 Pg carbon, identifying differences in decomposability according to such translocation processes has large implications for the future global carbon cycle and climate, and directs further process model development

    Particulate and dissolved organic carbon in the Lena Delta – the Arctic Ocean interface

    Get PDF
    Rapid Arctic warming accelerates permafrost thaw releasing aged organic matter (OM) to inland aquatic ecosystems and ultimately, after transport via estuaries or deltas, to the Arctic Ocean nearshore. Despite the importance of Arctic deltas, their functioning is still poorly studied. Here, we examined seasonal fluctuations and spatial differences in the quantity and composition of OM in the Lena Delta, measuring dissolved and particulate organic carbon (DOC and POC) concentrations, carbon isotopes (δ13C and Δ14C), and total suspended matter (TSM). We compared deltaic POC to the POC in the Lena River main stem over a ~1600 km transect, from Yakutsk to the Lena Delta. We further examined and compared dynamics of DOC and POC in summer and winter across a ~140 km transect in the Lena Delta. TSM and POC concentrations decreased by 75 % during transit from Yakutsk to the Lena Delta. 18 % of deltaic and 5 % of river main stem POC originated from Yedoma deposits. Thus, despite lower concentrations of POC in the delta, amount of POC from Yedoma deposits in deltaic waters were almost twice as large as in the main stem (0.07 ±0.02 and 0.04 ±0.02 mg L-1, respectively). Deltaic POC was strongly depleted in 13C due to significant phytoplankton contributions (~-68 ±6 %). Strong differences between winter and summer samples in DOC and POC concentrations and their properties in the Lena Delta were also found. Combined analyses of DOC and POC revealed that Pleistocene-aged Yedoma deposits were still actively degrading in winter influencing the quantity and composition of OM of the Lena Delta and exported OC loads. Deltaic processes control the type and amount of OM exported to the Arctic Ocean and require deeper investigations as crucial processes for the riverine and oceans pathways in a warming Arctic

    Particulate organic matter in the Lena River and its delta: from the permafrost catchment to the Arctic Ocean

    Get PDF
    Rapid Arctic warming accelerates permafrost thaw, causing an additional release of terrestrial organic matter (OM) into rivers and, ultimately, after transport via deltas and estuaries, to the Arctic Ocean nearshore. The majority of our understanding of nearshore OM dynamics and fate has been developed from freshwater rivers despite the likely impact of highly dynamic estuarine and deltaic environments on the transformation, storage, and age of OM delivered to coastal waters. Here, we studied particulate organic carbon (POC) dynamics in the Lena River delta and compared them with POC dynamics in the Lena River main stem along a ∼ 1600 km long transect from Yakutsk, downstream to the delta. We measured POC, total suspended matter (TSM), and carbon isotopes (δ13C and Δ14C) in POC to compare riverine and deltaic OM composition and changes in OM source and fate during transport offshore. We found that TSM and POC concentrations decreased by 70 % during transit from the main stem to the delta and Arctic Ocean. We found deltaic POC to be strongly depleted in 13C relative to fluvial POC. Dual-carbon (Δ14C and δ13C) isotope mixing model analyses indicated a significant phytoplankton contribution to deltaic POC (∼ 68 ± 6 %) and suggested an additional input of permafrost-derived OM into deltaic waters (∼ 18 ± 4 % of deltaic POC originates from Pleistocene deposits vs. ∼ 5 ± 4 % in the river main stem). Despite the lower concentration of POC in the delta than in the main stem (0.41 ± 0.10 vs. 0.79 ± 0.30 mg L−1, respectively), the amount of POC derived from Yedoma deposits in deltaic waters was almost twice as large as the amount of POC of Yedoma origin in the main stem (0.07 ± 0.02 and 0.04 ± 0.02 mg L−1, respectively). We assert that estuarine and deltaic processes require consideration in order to correctly understand OM dynamics throughout Arctic nearshore coastal zones and how these processes may evolve under future climate-driven change.</p

    Enhanced river runoff and permafrost thaw affect Arctic shelf processes

    Get PDF
    Enhanced river runoff and coastal erosion are causing greater amounts of terrestrial material supply to Arctic shelf waters. Increasing freshwater export of carbon and nutrient loads from land (terr-OM) together with compositional shifts - due to changing hydrologic flow paths and permafrost thaw, can modify shelf water chemistry and biogeochemical processes. Here, we examine how shifts in land-ocean terr-OM supply may alter shelf primary productivity, respiration and ultimately net regional CO2 air–sea fluxes. Unique insights into terr-OM dynamics and composition during transit through riverine, deltaic and shelf waters were collected through multiple field campaigns on the Lena River and Laptev Sea shelf region. Harnessing these field data, we examine the effects of contemporary and future terr-OM supply to shelf waters using newly developed 1-D and 3-D regional biogeochemical models specifically capable of parameterising terr-OM, composition and degradation. In agreement with prior studies, we find that land-derived nutrients could strengthen coastal production sustaining up to ~50% of primary productivity under current terr-OM conditions. However, we also found that additional terr-OM supply caused increased light limitation in coastal waters, offsetting nutrient fertilization effects and stimulating zooplankton grazing. Model experiments indicate that future increases in terr-OM of between 25-50% and/ or shifts to more biologically reactive coastal OM -such as to be expected with permafrost thaw, will reduce net CO2 uptake and lead to positive CO2 feedback from Arctic shelf waters. Our results question the capacity of the coastal Arctic Ocean to serve as a net sink for atmospheric CO2 with future increasing land-ocean connectivity and terr-OM supply

    Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic

    Get PDF
    In permafrost soils, the temperature regime and the resulting cryogenic processes are important determinants of the storage of organic carbon (OC) and its small-scale spatial variability. For cryoturbated soils, there is a lack of research assessing pedon-scale heterogeneity in OC stocks and the transformation of functionally different organic matter (OM) fractions, such as particulate and mineral-associated OM. Therefore, pedons of 28 Turbels were sampled in 5 m wide soil trenches across the Siberian Arctic to calculate OC and total nitrogen (TN) stocks based on digital profile mapping. Density fractionation of soil samples was performed to distinguish between particulate OM (light fraction, LF, 1.6 g cm−3), and a mobilizable dissolved pool (mobilizable fraction, MoF). Across all investigated soil profiles, the total OC storage was 20.2 ± 8.0 kg m−2 (mean ± SD) to 100 cm soil depth. Fifty-four percent of this OC was located in the horizons of the active layer (annual summer thawing layer), showing evidence of cryoturbation, and another 35 % was present in the upper permafrost. The HF-OC dominated the overall OC stocks (55 %), followed by LF-OC (19 % in mineral and 13 % in organic horizons). During fractionation, approximately 13 % of the OC was released as MoF, which likely represents a readily bioavailable OM pool. Cryogenic activity in combination with cold and wet conditions was the principle mechanism through which large OC stocks were sequestered in the subsoil (16.4 ± 8.1 kg m−2; all mineral B, C, and permafrost horizons). Approximately 22 % of the subsoil OC stock can be attributed to LF material subducted by cryoturbation, whereas migration of soluble OM along freezing gradients appeared to be the principle source of the dominant HF (63 %) in the subsoil. Despite the unfavourable abiotic conditions, low C / N ratios and high δ13C values indicated substantial microbial OM transformation in the subsoil, but this was not reflected in altered LF and HF pool sizes. Partial least-squares regression analyses suggest that OC accumulates in the HF fraction due to co-precipitation with multivalent cations (Al, Fe) and association with poorly crystalline iron oxides and clay minerals. Our data show that, across all permafrost pedons, the mineral-associated OM represents the dominant OM fraction, suggesting that the HF-OC is the OM pool in permafrost soils on which changing soil conditions will have the largest impact.Russian Ministry of Education and Science/14.B25.31.0031German Federal Ministry of Education and Research/03F0616AEvangelisches Studienwerk VilligstDF

    PeRL : a circum-Arctic Permafrost Region Pond and Lake database

    Get PDF
    Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i. e., waterbodies with surface areas smaller than 1.0 x 10(4) m(2), have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002-2013) high-resolution aerial and satellite imagery with a resolution of 5m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1.4 x 10(6) km(2) across the Arctic, about 17% of the Arctic lowland (Peer reviewe

    PeRL:A circum-Arctic Permafrost Region Pond and Lake database

    Get PDF
    Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1. 0 × 104ĝ€m2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002-2013) high-resolution aerial and satellite imagery with a resolution of 5ĝ€m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6ĝ€m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1. 4 × 106ĝ€km2 across the Arctic, about 17ĝ€% of the Arctic lowland ( &lt; ĝ€300ĝ€mĝ€a.s.l.) land surface area. PeRL waterbodies with sizes of 1. 0 × 106ĝ€m2 down to 1. 0 × 102ĝ€m2 contributed up to 21ĝ€% to the total water fraction. Waterbody density ranged from 1. 0 × 10 to 9. 4 × 101ĝ€kmĝ'2. Ponds are the dominant waterbody type by number in all landscapes representing 45-99ĝ€% of the total waterbody number. The implementation of PeRL size distributions in land surface models will greatly improve the investigation and projection of surface inundation and carbon fluxes in permafrost lowlands. Waterbody maps, study area boundaries, and maps of regional permafrost landscapes including detailed metadata are available at https://doi.pangaea.de/10.1594/PANGAEA.868349

    High-resolution bathymetry models for the Lena Delta and Kolyma Gulf coastal zones

    Get PDF
    Arctic river deltas and deltaic near-shore zones represent important land-ocean transition zones influencing sediment dynamics and nutrient fluxes from permafrost-affected terrestrial ecosystems into the coastal Arctic Ocean. To accurately model fluvial carbon and freshwater export from rapidly changing river catchments, as well assessing impacts of future change on the Arctic shelf and coastal ecosystems, we need to understand the sea floor characteristics and topographic variety of the coastal zones. To date, digital bathymetrical data from the poorly accessible, shallow and large areas of the eastern Siberian Arctic shelves are sparse. We have digitized bathymetrical information for nearly 75,000 locations from large-scale (1:25,000 – 1:500,000) current and historical nautical maps of the Lena Delta and the Kolyma Gulf region in Northeast Siberia. We present the first detailed and seamless digital models of coastal zone bathymetry for both delta/gulf regions in 50 m and 200 m spatial resolution. We validated the resulting bathymetry layers using a combination of our own water depth measurements and a collection of available depth measurements, which showed a strong correlation (r > 0.9). Our bathymetrical models will serve as an input for a high-resolution coupled hydrodynamic-ecosystem model to better quantify fluvial and coastal carbon fluxes to the Arctic Ocean but may be useful for a range of other studies related to Arctic delta and near-shore dynamics such as modelling of submarine permafrost, near-shore sea ice, or shelf sediment transport

    Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks

    Get PDF
    Large stocks of soil organic carbon (SOC) have accumulated in the Northern Hemisphere permafrost region, but their current amounts and future fate remain uncertain. By analyzing dataset combining >2700 soil profiles with environmental variables in a geospatial framework, we generated spatially explicit estimates of permafrost-region SOC stocks, quantified spatial heterogeneity, and identified key environmental predictors. We estimated that Pg C are stored in the top 3 m of permafrost region soils. The greatest uncertainties occurred in circumpolar toe-slope positions and in flat areas of the Tibetan region. We found that soil wetness index and elevation are the dominant topographic controllers and surface air temperature (circumpolar region) and precipitation (Tibetan region) are significant climatic controllers of SOC stocks. Our results provide first high-resolution geospatial assessment of permafrost region SOC stocks and their relationships with environmental factors, which are crucial for modeling the response of permafrost affected soils to changing climate

    Short communication: a new dataset for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region

    Get PDF
    High latitude terrestrial ecosystems are key components in the global carbon (C) cycle. The Northern Circumpolar Soil Carbon Database (NCSCD) was developed to quantify stocks of soil organic carbon (SOC) in the northern circumpolar permafrost region (18.7×106 km2 5 ). The NCSCD is a digital Geographical Information systems (GIS) database compiled from harmonized regional soil classification maps, in which data on soil coverage has been linked to pedon data from the northern permafrost regions. Previously, the NCSCD has been used to calculate SOC content (SOCC) and mass (SOCM) to the reference depths 0–30 cm and 0–100 cm (based on 1778 pedons). It 10 has been shown that soils of the northern circumpolar permafrost region also contain significant quantities of SOC in the 100–300 cm depth range, but there has been no circumpolar compilation of pedon data to quantify this SOC pool and there are no spatially distributed estimates of SOC storage below 100 cm depth in this region. Here we describe the synthesis of an updated pedon dataset for SOCC in deep soils 15 of the northern circumpolar permafrost regions, with separate datasets for the 100– 200 cm (524 pedons) and 200–300 cm (356 pedons) depth ranges. These pedons have been grouped into the American and Eurasian sectors and the mean SOCC for different soil taxa (subdivided into Histels, Turbels, Orthels, Histosols, and permafrost-free mineral soil taxa) has been added to the updated NCSCDv2. The updated version of 20 the database is freely available online in several different file formats and spatial resolutions that enable spatially explicit usage in e.g. GIS and/or terrestrial ecosystem models. The potential applications and limitations of the NCSCDv2 in spatial analyses are briefly discussed. An open access data-portal for all the described GIS-datasets is available online at: http://dev1.geo.su.se/bbcc/dev/v3/ncscd/download.php. The NC25 SCDv2 database has the doi:10.5879/ECDS/00000002
    corecore