146 research outputs found

    Association between Subcortical Lesions and Behavioral and Psychological Symptoms in Patients with Alzheimer's Disease.

    Get PDF
    Background/Aims: The most devastating features of Alz-heimer's disease (AD) are often the behavioral and psychological symptoms in dementia (BPSD). There is controversy as to whether subcortical lesions contribute to BPSD. The aim of this study was to examine the relationship between BPSD and subcortical lesions (white-matter lesions and lacunes) in AD. Methods: CT or MRI from 259 patients with mild-to-moderate AD were assessed with the Age-Related White Matter Changes scale. Linear measures of global and temporal atrophy and Mini-Mental State Examination scores were used to adjust for AD pathology and disease severity in logistic regression models with the BPSD items delusions, hallucinations, agitation, depression, anxiety, apathy and irritability. Results: Lacunes in the left basal ganglia were asso-ciated with delusions (OR 2.57, 95% CI 1.21-5.48) and hallucinations (OR 3.33, 95% CI 1.38-8.01) and lacunes in the right basal ganglia were associated with depression (OR 2.13, 95% CI 1.01-4.51). Conclusion: Lacunes in the basal ganglia resulted in a 2- to 3-fold increased risk of delusions, hallucinations and depression, when adjusting for cognition and atrophy. This suggests that basal ganglia lesions can contribute to BPSD in patients with AD, independently of the AD process

    Clouding observed for surface active, mPEG-grafted silica nanoparticles

    Get PDF
    Temperature-dependent phase-separation, clouding, has been observed in suspensions of silica nanoparticles surface-functionalized with methyl-poly(ethylene glycol) silane. Interparticle interactions and conformational changes of the grafted poly(ethylene glycol) chains influence the observed cloud points, and can be controlled by electrolyte concentration and pH. These findings open new routes to tailoring properties of Pickering emulsions

    Cerebral inflammation is an underlying mechanism of early death in Alzheimer’s disease: a 13-year cause-specific multivariate mortality study

    Full text link
    Introduction: Although Alzheimer’s disease (AD) is associated with early death, its life expectancy differs greatly between patients. A better understanding of this heterogeneity may reveal important disease mechanisms underlying the malignancy of AD. The aim of this study was to examine the relation between AD pathologies and early death in AD caused by dementia. Methods: At a memory clinic, 247 referred consecutive patients with AD were monitored during 12.6 ± 1.6 years. Multivariate Cox regression analyses were performed with baseline measures of amyloid beta (Aβ) pathology (APOE genotype, cerebrospinal fluid (CSF) Aβ42) tau pathology (CSF phosphorylated tau and total tau), cerebrovascular pathology (white-matter lesions and CSF/serum albumin ratio), neuroinflammatory pathology (CSF soluble vascular cell adhesion molecule-1, sVCAM-1), frontal, temporal, and central brain atrophies, global cognition, sex, and age. Comorbidities and medications also were analyzed. All continuous variables were transformed to z scores to compare hazard ratios (HRs) and 95% confidence intervals (CIs). Results: At follow-up, 89% of the patients had died. The mean survival time was 6.4 ± 3.0 years. The AD pathology that independently predicted an early death caused by dementia was cerebral inflammation (sVCAM-1; HR, 1.32; 95% CI, 1.07–1.64). Other independent predictors were lower global cognition (HR, 0.51; 95% CI, 0.43–0.61), frontal atrophy (HR, 1.38; 95% CI, 1.12–1.70), and medial temporal atrophy (HR, 1.23; 95% CI, 1.02–1.49). When examining death caused by dementia and related causes (vascular diseases and infections), age (HR, 1.23; 95% CI, 1.04–1.46) and cerebrovascular pathology (white-matter lesions: HR, 1.17; 95% CI, 1.01–1.36; and CSF/serum albumin ratio: HR, 1.16; 95% CI, 1.001–1.34) were also significant risk factors in addition to the previous variables. No comorbidity or medication was significant in the specific-cause models. Conclusions: This is the first study to link neuroinflammation independently to early death in AD and, hence, a rapidly progressing disease. Frontal and medial temporal atrophies and low cognition were also significant predictors. These are probably downstream biomarkers that reflect neuronal degeneration and late-stage disease. Our results suggest that inflammation, and not amyloid or tau pathology, is an independent underlying mechanism in the malignancy of AD

    High modal number and triple trisomies are highly correlated favorable factors in childhood B-cell precursor high hyperdiploid acute lymphoblastic leukemia treated according to the NOPHO ALL 1992/2000 protocols.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.Between 1992 and 2008, 713 high hyperdiploid acute lymphoblastic leukemias in children aged 1-15 years were diagnosed and treated according to the Nordic Society for Pediatric Hematology and Oncology acute lymphoblastic leukemia 1992/2000 protocols. Twenty (2.8%) harbored t(1;19), t(9;22), der(11q23), or t(12;21). The median age of patients with "classic" high hyperdiploidy was lower than that of patients with translocation-positive high hyperdiploidy (P53/55 (P=0.020/0.024). In multivariate analyses, modal number and triple trisomies were significantly associated with superior event-free survival in separate analyses with age and white blood cell counts. When including both modal numbers and triple trisomies, only low white blood cell counts were significantly associated with superior event-free survival (P=0.009). We conclude that high modal chromosome numbers and triple trisomies are highly correlated prognostic factors and that these two parameters identify the same subgroup of patients characterized by a particularly favorable outcome.Swedish Childhood Cancer Foundation Swedish Cancer Society Swedish Research Counci

    DNA Methylation Signatures Predict Cytogenetic Subtype and Outcome in Pediatric Acute Myeloid Leukemia (AML)

    Get PDF
    Pediatric acute myeloid leukemia (AML) is a heterogeneous disease composed of clinically relevant subtypes defined by recurrent cytogenetic aberrations. The majority of the aberrations used in risk grouping for treatment decisions are extensively studied, but still a large proportion of pediatric AML patients remain cytogenetically undefined and would therefore benefit from additional molecular investigation. As aberrant epigenetic regulation has been widely observed during leukemogenesis, we hypothesized that DNA methylation signatures could be used to predict molecular subtypes and identify signatures with prognostic impact in AML. To study genome-wide DNA methylation, we analyzed 123 diagnostic and 19 relapse AML samples on Illumina 450k DNA methylation arrays. We designed and validated DNA methylation-based classifiers for AML cytogenetic subtype, resulting in an overall test accuracy of 91%. Furthermore, we identified methylation signatures associated with outcome in t(8;21)/RUNX1-RUNX1T1, normal karyotype, and MLL/KMT2A-rearranged subgroups (p < 0.01). Overall, these results further underscore the clinical value of DNA methylation analysis in AML

    DNA Methylation Signatures Predict Cytogenetic Subtype and Outcome in Pediatric Acute Myeloid Leukemia (AML)

    Get PDF
    Pediatric acute myeloid leukemia (AML) is a heterogeneous disease composed of clinically relevant subtypes defined by recurrent cytogenetic aberrations. The majority of the aberrations used in risk grouping for treatment decisions are extensively studied, but still a large proportion of pediatric AML patients remain cytogenetically undefined and would therefore benefit from additional molecular investigation. As aberrant epigenetic regulation has been widely observed during leukemogenesis, we hypothesized that DNA methylation signatures could be used to predict molecular subtypes and identify signatures with prognostic impact in AML. To study genome-wide DNA methylation, we analyzed 123 diagnostic and 19 relapse AML samples on Illumina 450k DNA methylation arrays. We designed and validated DNA methylation-based classifiers for AML cytogenetic subtype, resulting in an overall test accuracy of 91%. Furthermore, we identified methylation signatures associated with outcome in t(8;21)/RUNX1-RUNX1T1, normal karyotype, and MLL/KMT2A-rearranged subgroups (p < 0.01). Overall, these results further underscore the clinical value of DNA methylation analysis in AML

    Fusion transcript analysis reveals slower response kinetics than multiparameter flow cytometry in childhood acute myeloid leukaemia

    Get PDF
    Funding Information: We thank the employees at the Department of Clinical Chemistry at Sahlgrenska University Hospital, Haemodiagnostic Laboratory at the Aarhus University Hospital, and Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet for sample collection, processing and analyses. Publisher Copyright: © 2022 The Authors. International Journal of Laboratory Hematology published by John Wiley & Sons Ltd.Introduction: Analysis of measurable residual disease (MRD) is increasingly being implemented in the clinical care of children and adults with acute myeloid leukaemia (AML). However, MRD methodologies differ and discordances in results lead to difficulties in interpretation and clinical decision-making. The aim of this study was to compare results from reverse transcription quantitative polymerase chain reaction (RT-qPCR) and multiparameter flow cytometry (MFC) in childhood AML and describe the kinetics of residual leukaemic burden during induction treatment. Methods: In 15 children who were treated in the NOPHO-AML 2004 trial and had fusion transcripts quantified by RT-qPCR, we compared MFC with RT-qPCR for analysis of MRD during (day 15) and after induction therapy. Eight children had RUNX1::RUNX1T1, one CBFB::MYH11 and six KMT2A::MLLT3. Results: When ≥0.1% was used as cut-off for positivity, 10 of 22 samples were discordant. The majority (9/10) were MRD positive with RT-qPCR but MRD negative with MFC, and several such cases showed the presence of mature myeloid cells. Fusion transcript expression was verified in mature cells as well as in CD34 expressing cells sorted from diagnostic samples. Conclusions: Measurement with RT-qPCR suggests slower response kinetics than indicated from MFC, presumably due to the presence of mature cells expressing fusion transcript. The prognostic impact of early measurements with RT-qPCR remains to be determined.Peer reviewe

    Candidate Genes for Expansion and Transformation of Hematopoietic Stem Cells by NUP98-HOX Fusion Genes

    Get PDF
    BACKGROUND: Hox genes are implicated in hematopoietic stem cell (HSC) regulation as well as in leukemia development through translocation with the nucleoporin gene NUP98. Interestingly, an engineered NUP98-HOXA10 (NA10) fusion can induce a several hundred-fold expansion of HSCs in vitro and NA10 and the AML-associated fusion gene NUP98-HOXD13 (ND13) have a virtually indistinguishable ability to transform myeloid progenitor cells in vitro and to induce leukemia in collaboration with MEIS1 in vivo. METHODOLOGY/PRINCIPAL FINDINGS: These findings provided a potentially powerful approach to identify key pathways mediating Hox-induced expansion and transformation of HSCs by identifying gene expression changes commonly induced by ND13 and NA10 but not by a NUP98-Hox fusion with a non-DNA binding homedomain mutation (N51S). The gene expression repertoire of purified murine bone marrow Sca-1+Lin- cells transduced with retroviral vectors encoding for these genes was established using the Affymetrix GeneChip MOE430A. Approximately seventy genes were differentially expressed in ND13 and NA10 cells that were significantly changed by both compared to the ND13(N51S) mutant. Intriguingly, several of these potential Hox target genes have been implicated in HSC expansion and self-renewal, including the tyrosine kinase receptor Flt3, the prion protein, Prnp, hepatic leukemia factor, Hlf and Jagged-2, Jag2. Consistent with these results, FLT3, HLF and JAG2 expression correlated with HOX A cluster gene expression in human leukemia samples. CONCLUSIONS: In conclusion this study has identified several novel Hox downstream target genes and provides important new leads to key regulators of the expansion and transformation of hematopoietic stem cells by Hox

    Feasibility to use whole-genome sequencing as a sole diagnostic method to detect genomic aberrations in pediatric B-cell acute lymphoblastic leukemia

    Get PDF
    IntroductionThe suitability of whole-genome sequencing (WGS) as the sole method to detect clinically relevant genomic aberrations in B-cell acute lymphoblastic leukemia (ALL) was investigated with the aim of replacing current diagnostic methods.MethodsFor this purpose, we assessed the analytical performance of 150 bp paired-end WGS (90x leukemia/30x germline). A set of 88 retrospective B-cell ALL samples were selected to represent established ALL subgroups as well as ALL lacking stratifying markers by standard-of-care (SoC), so-called B-other ALL.ResultsBoth the analysis of paired leukemia/germline (L/N)(n=64) as well as leukemia-only (L-only)(n=88) detected all types of aberrations mandatory in the current ALLTogether trial protocol, i.e., aneuploidies, structural variants, and focal copy-number aberrations. Moreover, comparison to SoC revealed 100% concordance and that all patients had been assigned to the correct genetic subgroup using both approaches. Notably, WGS could allocate 35 out of 39 B-other ALL samples to one of the emerging genetic subgroups considered in the most recent classifications of ALL. We further investigated the impact of high (90x; n=58) vs low (30x; n=30) coverage on the diagnostic yield and observed an equally perfect concordance with SoC; low coverage detected all relevant lesions.DiscussionThe filtration of the WGS findings with a short list of genes recurrently rearranged in ALL was instrumental to extract the clinically relevant information efficiently. Nonetheless, the detection of DUX4 rearrangements required an additional customized analysis, due to multiple copies of this gene embedded in the highly repetitive D4Z4 region. We conclude that the diagnostic performance of WGS as the standalone method was remarkable and allowed detection of all clinically relevant genomic events in the diagnostic setting of B-cell ALL
    • …
    corecore