11,135 research outputs found

    Drought events and their effects on vegetation productivity in China

    Get PDF
    Many parts of the world have experienced frequent and severe droughts during the last few decades. Most previous studies examined the effects of specific drought events on vegetation productivity. In this study, we characterized the drought events in China from 1982 to 2012 and assessed their effects on vegetation productivity inferred from satellite data. We first assessed the occurrence, spatial extent, frequency, and severity of drought using the Palmer Drought Severity Index (PDSI). We then examined the impacts of droughts on China\u27s terrestrial ecosystems using the Normalized Difference Vegetation Index (NDVI). During the period 1982–2012, China\u27s land area (%) experiencing drought showed an insignificant trend. However, the drought conditions had been more severe over most regions in northern parts of China since the end of the 1990s, indicating that droughts hit these regions more frequently due to the drier climate. The severe droughts substantially reduced annual and seasonal NDVI. The magnitude and direction of the detrended NDVI under drought stress varied with season and vegetation type. The inconsistency between the regional means of PDSI and detrended NDVI could be attributed to different responses of vegetation to drought and the timing, duration, severity, and lag effects of droughts. The negative effects of droughts on vegetation productivity were partly offset by the enhancement of plant growth resulting from factors such as lower cloudiness, warming climate, and human activities (e.g., afforestation, improved agricultural management practices)

    Six-Dimensional (1,0) Superconformal Models and Higher Gauge Theory

    Full text link
    We analyze the gauge structure of a recently proposed superconformal field theory in six dimensions. We find that this structure amounts to a weak Courant-Dorfman algebra, which, in turn, can be interpreted as a strong homotopy Lie algebra. This suggests that the superconformal field theory is closely related to higher gauge theory, describing the parallel transport of extended objects. Indeed we find that, under certain restrictions, the field content and gauge transformations reduce to those of higher gauge theory. We also present a number of interesting examples of admissible gauge structures such as the structure Lie 2-algebra of an abelian gerbe, differential crossed modules, the 3-algebras of M2-brane models and string Lie 2-algebras.Comment: 31+1 pages, presentation slightly improved, version published in JM

    Physical Investigation into Effective Voltage Balancing by Temporary Clamp Technique for the Series Connection of IGBTs

    Get PDF
    The series connection of IGBTs is essential for high-voltage applications where fast switching performances need to be maintained. However, unbalanced voltage sharing is a major resistance to the converter application of this structure. There are a number of causes leading to voltage unbalance, such as different signal delays, parasitic parameters, tail currents, and so on. A temporary clamp scheme performed by active voltage control (AVC) has been proven to be effective in solving the unbalanced voltage-sharing issue. However, the basic physics has not been investigated. In this paper, the physical principle of voltage unbalance within IGBTs series operation is discussed. The carrier storage region differences are concluded to be the intrinsic cause of unbalanced voltage sharing. By using an accurate Fourier-series-based IGBT simulation model with appropriate assumptions, a physical explanation for temporary clamp is provided in detail. At the end of the tail current period when the excess carrier concentration becomes close to the intrinsic doping density, the temporary clamp is able to achieve satisfactory equal voltage sharing

    Decoupling a Cooper-pair box to enhance the lifetime to 0.2 ms

    Full text link
    We present a circuit QED experiment in which a separate transmission line is used to address a quasi-lumped element superconducting microwave resonator which is in turn coupled to an Al/AlOx_{x}/Al Cooper-pair box (CPB) charge qubit. In our measurements we find a strong correlation between the measured lifetime of the CPB and the coupling between the qubit and the transmission line. By monitoring perturbations of the resonator's 5.44 GHz resonant frequency, we have measured the spectrum, lifetime (T1T_{1}), Rabi, and Ramsey oscillations of the CPB at the charge degeneracy point while the CPB was detuned by up to 2.5 GHz . We find a maximum lifetime of the CPB was T1=200 μT_{1} = 200\ \mus for f=4f = 4 to 4.5 GHz. Our measured T1T_{1}'s are consistent with loss due to coupling to the transmission line, spurious microwave circuit resonances, and a background decay rate on the order of 5×1035\times 10^{3} s−1^{-1} of unknown origin, implying that the loss tangent in the AlOx_{x} junction barrier must be less than about 4×10−84\times 10^{-8} at 4.5 GHz, about 4 orders of magnitude less than reported in larger area Al/AlOx_{x}/Al tunnel junctions

    Monoenergetic proton beams accelerated by a radiation pressure driven shock

    Full text link
    High energy ion beams (> MeV) generated by intense laser pulses promise to be viable alternatives to conventional ion beam sources due to their unique properties such as high charge, low emittance, compactness and ease of beam delivery. Typically the acceleration is due to the rapid expansion of a laser heated solid foil, but this usually leads to ion beams with large energy spread. Until now, control of the energy spread has only been achieved at the expense of reduced charge and increased complexity. Radiation pressure acceleration (RPA) provides an alternative route to producing laser-driven monoenergetic ion beams. In this paper, we show the interaction of an intense infrared laser with a gaseous hydrogen target can produce proton spectra of small energy spread (~ 4%), and low background. The scaling of proton energy with the ratio of intensity over density (I/n) indicates that the acceleration is due to the shock generated by radiation-pressure driven hole-boring of the critical surface. These are the first high contrast mononenergetic beams that have been theorised from RPA, and makes them highly desirable for numerous ion beam applications

    Applying the Transdisciplinary Adaptive Systemic Approach to Securing the Long-Term Future of Grassland Ecosystems

    Get PDF
    Contemporary grasslands all exist as complex adaptive systems, specifically complex social-ecological systems – whether these are in protected areas or are part of private or communal agricultural landscapes. These systems are subject to the current planetary condition that includes rapidly growing human populations and demand for natural resources, the widespread use of pollutants, and climate change consequences. All complex adaptive systems have characteristics in common - they comprise multiple elements, which interact, and the multiple interactions cause intersecting feedback loops. As a result, a current system condition reflects its history, future condition is difficult to predict, and interventions have unpredictable outcomes – some positive others negative. The system itself produces emergent properties – new characteristics - through time, out of the multiple element interactions. As complex social-ecological systems, grasslands have all the interactive complexity of both society and ecosystems. This paper uses place-based landscape restoration interventions in the grasslands of the Tsitsa River Catchment, South Africa, and the Lake Tana basin, Ethiopia, to showcase the development and application of the Adaptive Systemic Approach – which we present as an advance in participatory sustainability science
    • …
    corecore