207 research outputs found

    The authors reply

    Get PDF

    Interleukin-21 sustains inflammatory signals that contribute to sporadic colon tumorigenesis

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This work received support from the “Fondazione Umberto di Mario ONLUS”, Rome, and AIRC (MFAG-12108 to CS and IG-13049 to GM)

    Interleukin-21 sustains inflammatory signals that contribute to sporadic colon tumorigenesis

    Get PDF
    Interleukin (IL)-21 triggers inflammatory signals that contribute to the growth of neoplastic cells in mouse models of colitis-associated colorectal cancer (CRC). Because most CRCs are sporadic and arise in the absence of overt inflammation we have investigated the role of IL-21 in these tumors in mouse and man. IL-21 was highly expressed in human sporadic CRC and produced mostly by IFN-γ-expressing T-bet/RORγt double-positive CD3+CD8- cells. Stimulation of human CRC cell lines with IL-21 did not directly activate the oncogenic transcription factors STAT3 and NF-kB and did not affect CRC cell proliferation and survival. In contrast, IL-21 modulated the production of protumorigenic factors by human tumor infiltrating T cells. IL-21 was upregulated in the neoplastic areas, as compared with non-tumor mucosa, of Apc(min/+) mice, and genetic ablation of IL-21 in such mice resulted in a marked decrease of both tumor incidence and size. IL-21 deficiency was associated with reduced STAT3/NF-kB activation in both immune cells and neoplastic cells, diminished synthesis of protumorigenic cytokines (that is, IL-17A, IL-22, TNF-α and IL-6), downregulation of COX-2/PGE2 pathway and decreased angiogenesis in the lesions of Apc(min/+) mice. Altogether, data suggest that IL-21 promotes a protumorigenic inflammatory circuit that ultimately sustains the development of sporadic CRC

    Mongersen, an oral SMAD7 antisense oligonucleotide, and crohn's disease

    Get PDF
    Background Crohn's disease-related inflammation is characterized by reduced activity of the immunosuppressive cytokine transforming growth factor β1 (TGF-β1) due to high levels of SMAD7, an inhibitor of TGF-β1 signaling. Preclinical studies and a phase 1 study have shown that an oral SMAD7 antisense oligonucleotide, mongersen, targets ileal and colonic SMAD7. Methods In a double-blind, placebo-controlled, phase 2 trial, we evaluated the efficacy of mongersen for the treatment of persons with active Crohn's disease. Patients were randomly assigned to receive 10, 40, or 160 mg of mongersen or placebo per day for 2 weeks. The primary outcomes were clinical remission at day 15, defined as a Crohn's Disease Activity Index (CDAI) score of less than 150, with maintenance of remission for at least 2 weeks, and the safety of mongersen treatment. A secondary outcome was clinical response (defined as a reduction of 100 points or more in the CDAI score) at day 28. Results The proportions of patients who reached the primary end point were 55% and 65% for the 40-mg and 160-mg mongersen groups, respectively, as compared with 10% for the placebo group (P<0.001). There was no significant difference in the percentage of participants reaching clinical remission between the 10-mg group (12%) and the placebo group. The rate of clinical response was significantly greater among patients receiving 10 mg (37%), 40 mg (58%), or 160 mg (72%) of mongersen than among those receiving placebo (17%) (P = 0.04, P<0.001, and P<0.001, respectively). Most adverse events were related to complications and symptoms of Crohn's disease. Conclusions We found that study participants with Crohn's disease who received mongersen had significantly higher rates of remission and clinical response than those who received placebo

    Th17-related cytokines: new players in the control of chronic intestinal inflammation

    Get PDF
    Crohn's disease (CD) and ulcerative colitis (UC), the main forms of inflammatory bowel diseases (IBD) in man, are thought to be caused by an excessive and poorly controlled immune response that is directed against components of the normal microflora. The exact sequence of events by which this pathological process is triggered and maintained is not fully understood, but studies in experimental models of IBD and data emerging from recent clinical trials indicate that T cell-derived cytokines are crucial mediators of the tissue damage. Although CD and UC have been traditionally considered two typical examples of T helper (Th)1 or Th2-associated disease respectively, it is now known that CD- and UC-related inflammation is also marked by enhanced production of cytokines made by a distinct subset of Th cells, termed Th17 cells. Th17 cytokines can have both tissue-protective and inflammatory effects in the gut and there is evidence that Th17 cells can alter their cytokine program according to the stimuli received and convert into Th1-producing cells. These novel findings have contributed to advancing our understanding of mechanisms of gut tissue damage and open new avenues for development of therapeutic strategies in IBD

    Aryl hydrocarbon receptor and colitis

    No full text
    The aryl hydrocarbon receptor (AhR), a transcription factor activated by a large variety of natural and synthetic ligands, has recently become the object of great interest among researchers since it represents an important link between environment and immune-mediated pathologies. In this context, evidence has been accumulated to show that AhR is necessary for the maintenance/expansion of intraepithelial lymphocytes and interleukin-22-producing innate lymphoid cells in the gut and that defects in AhR-delivered signals may contribute to amplify gut tissue destructive immune-inflammatory reactions. We here review the available data supporting the role of AhR in the control of immune homeostasis in the gut and discuss whether and how AhR activators can help dampen inflammatory processes

    Th17-cytokine blockers as a new approach for treating inflammatory bowel disease

    Get PDF
    Anti-cytokine therapies, including the anti-TNF-α antibody-based therapies, have largely transformed the management of patients with inflammatory bowel diseases (IBD). However, benefit is seen in nearly 50% of patients, and response can wane with time. Moreover, patients treated with anti-TNF-α antibodies can develop severe side-effects and new immune-mediated diseases. Therefore enormous effort has been made by the research community to elucidate new inflammatory networks in the IBD tissue and to develop novel anti-cytokine compounds, which may act in patients who do not respond to or cannot receive anti-TNF-α therapies. In this article we review the available data supporting the pathogenic role of Th17 cytokines in IBD, and discuss whether and how inhibitors of these inflammatory mediators may enter into the therapeutic armamentarium of IBD

    Th17-related cytokines in inflammatory bowel diseases: friends or foes?

    No full text
    T helper (Th)17 cells and other interleukin (IL)-17-producing cells are supposed to play critical roles in several human immune-mediated diseases, including Crohn's disease (CD) and ulcerative colitis (UC), the main forms of inflammatory bowel diseases (IBD) in man. Th17 cells infiltrate massively the inflamed intestine of IBD patients and in vitro and in vivo studies have shown that Th17-type cytokines may trigger and amplify multiple inflammatory pathways. Nonetheless, some Th17-related cytokines, such as interleukin (IL)-17A and IL-22, may target gut epithelial cells and promote the activation of counter-regulatory mechanisms. This observation together with the demonstration that Th17 cells are not stable and can be converted into either regulatory T cells or Th1 cells if stimulated by immune-suppressive (e.g. TGF-β1) or inflammatory (e.g. IL-12, IL-23) cytokines have contributed to advance our understanding of mechanisms that regulate mucosal homeostasis and inflammation in the gut
    • …
    corecore