17 research outputs found

    False‑positive technetium‑99m methylene diphosphonate bone scan activity in the orbit in a patient with a history of breast carcinoma

    Get PDF
    Metastasis of breast carcinoma to the orbit is an uncommon entity and carries a poor prognosis. This case report presents false-positive technetium-99m methylene diphosphonate activity in the right orbit of a patient with a history of a primary breast neoplasm. Orbital computed tomography imaging was obtained to further characterize the radiotracer uptake identified on the bone scan and demonstrated diffuse right globe intraocular calcifications secondary to degenerative intraocular changes. A brief literature review of orbital metastasis from breast carcinoma and causes of intraocular calcification in the context of chronic vision loss are provided

    Corneal alterations associated with pseudoexfoliation syndrome and glaucoma: A literature review

    Get PDF
    A systematic literature review was performed evaluating articles examining the effects of pseudoexfoliation syndrome (PEX) and glaucoma (PEXG) on the cornea with a focus on the corneal endothelium. We searched for articles relevant to pseudoexfoliation syndrome, pseudoexfoliation glaucoma and corneal endothelial cell counts using Pubmed, Google Scholar Database, Web of Science and cochrane Library databases published prior to September of 2016. We then screened the references of these retrieved papers and performed a Web of Science cited reference search. corneal characteristics analyzed included central corneal thickness (ccT), corneal nerve density, endothelial cell density (EcD), polymegathism, and pleomorphism. These parameters were compared in the following populations: control, PEX, PEXG, and primary open angle glaucoma (POAG). Over 30 observational studies were reviewed. Most studies showed a statistically significant lower EcD in PEX and PEXG populations compared to controls. Overall, PEX eyes had a non-statistically significant trend of lower EcDs compared to PEXG eyes. No consistent trends were found when analyzing differences in ccT amongst control, PEX and PEXG groups. For the few studies that looked at corneal nerve characteristics, the control groups were found to have statistically significantly greater nerve densities than PEX eyes, which had significantly greater densities than PEXG eyes. EcD and corneal nerve densities may be potential metrics for risk-stratifying patients with PEX and PEXG. Our literature review provided further evidence of the significant negative influence PEX has on the cornea, worsening as patients convert to PEXG

    Changes in posterior scleral collagen microstructure in canine eyes with an ADAMTS10 mutation

    Get PDF
    Purpose: We aimed to characterize alterations in the posterior scleral collagen microstructure before detectable disease onset in a canine model of open-angle glaucoma caused by an ADAMTS10 mutation. Methods: Collagen orientation, anisotropy degree (proportion of preferentially aligned collagen), and relative density were measured at 0.4 mm spatial resolution using synchrotron wide-angle X-ray scattering. For statistical evaluation of structure parameters, regional averages of the peripapillary and mid-posterior sclera were compared between ADAMTS10 mutant (affected) dogs (n = 3) and age-matched (carrier) controls (n = 3). Results: No marked differences in the general pattern of preferential collagen fibril orientation were noted between the control and affected dogs. The peripapillary sclera of all specimens featured strongly aligned circumferential collagen ringing the optic nerve head. Collagen anisotropy was significantly reduced in the mid-posterior sclera of the affected dogs (carrier: 0.27±0.11; affected: 0.24±0.10; p = 0.032) but was not statistically significantly different in the peripapillary sclera (carrier: 0.46±0.15; affected: 0.45±0.17; p = 0.68). Collagen density was statistically significantly reduced in the affected dogs for the mid-posterior sclera (carrier: 28.1±9.14; affected: 18.3±5.12; p<0.0001) and the peripapillary sclera (carrier: 34.6±9.34; affected: 21.1±6.97; p = 0.0002). Conclusions: Significant alterations in the posterior scleral collagen microstructure are present before the onset of clinical glaucoma in ADAMTS10 mutant dogs. A reduction in fibrous collagen density is likely an important contributory factor in the previously reported mechanical weakening of the sclera in this model. Baseline scleral abnormalities have the potential to interact with intraocular pressure (IOP) elevations in determining the course of glaucoma progression in animal models of the disease, and potentially in human glaucoma

    Influence of age on ocular biomechanical properties in a canine glaucoma model with ADAMTS10 mutation

    Get PDF
    <div><p>Soft tissue often displays marked age-associated stiffening. This study aims to investigate how age affects scleral biomechanical properties in a canine glaucoma model with <i>ADAMTS10</i> mutation, whose extracellular matrix is concomitantly influenced by the mutation and an increased mechanical load from an early age. Biomechanical data was acquired from <i>ADAMTS10-</i>mutant dogs (n = 10, 21 to 131 months) and normal dogs (n = 5, 69 to 113 months). Infusion testing was first performed in the whole globes to measure ocular rigidity. After infusion experiments, the corneas were immediately trephined to prepare scleral shells that were mounted on a pressurization chamber to measure strains in the posterior sclera using an inflation testing protocol. Dynamic viscoelastic mechanical testing was then performed on dissected posterior scleral strips and the data were combined with those reported earlier by our group from the same animal model (Palko et al, IOVS 2013). The association between age and scleral biomechanical properties was evaluated using multivariate linear regression. The relationships between scleral properties and the mean and last measured intraocular pressure (IOP) were also evaluated. Our results showed that age was positively associated with complex modulus (p<0.001) and negatively associated with loss tangent (p<0.001) in both the affected and the normal groups, suggesting an increased stiffness and decreased mechanical damping with age. The regression slopes were not different between the groups, although the complex modulus was significantly lower in the affected group (p = 0.041). The posterior circumferential tangential strain was negatively correlated with complex modulus (R = -0.744, p = 0.006) showing consistent mechanical evaluation between the testing methods. Normalized ocular rigidity was negatively correlated with the last IOP in the affected group (p = 0.003). Despite a mutation that affects the extracellular matrix and a chronic IOP elevation in the affected dogs, age-associated scleral stiffening and loss of mechanical damping were still prominent and had a similar rate of change as in the normal dogs.</p></div

    Changes in posterior scleral collagen microstructure in canine eyes with an ADAMTS10 mutation

    Get PDF
    Purpose: We aimed to characterize alterations in the posterior scleral collagen microstructure before detectable disease onset in a canine model of open-angle glaucoma caused by an ADAMTS10 mutation. Methods: Collagen orientation, anisotropy degree (proportion of preferentially aligned collagen), and relative density were measured at 0.4 mm spatial resolution using synchrotron wide-angle X-ray scattering. For statistical evaluation of structure parameters, regional averages of the peripapillary and mid-posterior sclera were compared between ADAMTS10 mutant (affected) dogs (n = 3) and age-matched (carrier) controls (n = 3). Results: No marked differences in the general pattern of preferential collagen fibril orientation were noted between the control and affected dogs. The peripapillary sclera of all specimens featured strongly aligned circumferential collagen ringing the optic nerve head. Collagen anisotropy was significantly reduced in the mid-posterior sclera of the affected dogs (carrier: 0.27±0.11; affected: 0.24±0.10; p = 0.032) but was not statistically significantly different in the peripapillary sclera (carrier: 0.46±0.15; affected: 0.45±0.17; p = 0.68). Collagen density was statistically significantly reduced in the affected dogs for the mid-posterior sclera (carrier: 28.1±9.14; affected: 18.3±5.12; p<0.0001) and the peripapillary sclera (carrier: 34.6±9.34; affected: 21.1±6.97; p = 0.0002). Conclusions: Significant alterations in the posterior scleral collagen microstructure are present before the onset of clinical glaucoma in ADAMTS10 mutant dogs. A reduction in fibrous collagen density is likely an important contributory factor in the previously reported mechanical weakening of the sclera in this model. Baseline scleral abnormalities have the potential to interact with intraocular pressure (IOP) elevations in determining the course of glaucoma progression in animal models of the disease, and potentially in human glaucoma

    DMA and tensile testing protocols for each specimen strip.

    No full text
    <p>* indicated the small manual adjustments to fine tune the desired preload levels. Based on the predicted stress-relaxation that occurs in most soft tissue, the strip was first brought to a load 35% higher than the target pre-load (either 0.04 N or 0.10 N) prior to the manual adjustment. This is indicated by the initial stress overshoot in the figure)</p

    Fundus image of representative normal and affected dogs.

    No full text
    <p>The normal canine ONH appears pink and irregularly shaped due to myelination of the retinal ganglion cell axons as shown in this 72.1-month old carrier of the G661R <i>ADAMTS10</i> missense mutation (<b>A</b>). While the ONH still appears normal early in the disease process (<b>B1</b>, 21.1-month old affected dog), it becomes dark and round with advanced disease-related atrophy (<b>B2</b> and <b>B3</b>, 89.4- and 94.9-month affected dogs, respectively). With moderate atrophy, the ONH still appears slightly pink and irregularly shaped (<b>B4</b>). Because of secondary cornea and lens opacification with advanced glaucoma, the quality of the fundus images deteriorates and makes visualization of details such as cupping difficult. The identification of these representative dogs in the lower right corners of the images matches those in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0156466#pone.0156466.t001" target="_blank">Table 1</a>.</p
    corecore