48 research outputs found
"Nanohybrids" based on pH-responsive hydrogels and inorganic nanoparticles for drug delivery and sensor applications.
Allyl-PEG capped inorganic NPs, including magnetic iron oxide (IONPs), fluorescent CdSe/ZnS quantum dots (QDs), and metallic gold (AuNPs of 5 and 10 nm) both individually and in combination, were covalently attached to pH-responsive poly(2-vinylpyridine-co-divinylbenzene) nanogels via a facile and robust one-step surfactant-free emulsion polymerization procedure. Control of the NPs associated to the nanogels was achieved by the late injection of the NPs to the polymerization solution at a stage when just polymeric radicals were present. Remarkably, by varying the total amount of NPs injected, the swelling behavior could be affected. Furthermore, the magnetic response as well as the optical features of the nanogels containing either IONPs or QDs could be modified. In addition, a radical quenching in case of gold nanoparticles was observed, thus affecting the final nanogel geometry
Crystal Structure Analysis Reveals Functional Flexibility in the Selenocysteine-Specific tRNA from Mouse
Selenocysteine tRNAs (tRNA(Sec)) exhibit a number of unique identity elements that are recognized specifically by proteins of the selenocysteine biosynthetic pathways and decoding machineries. Presently, these identity elements and the mechanisms by which they are interpreted by tRNA(Sec)-interacting factors are incompletely understood.We applied rational mutagenesis to obtain well diffracting crystals of murine tRNA(Sec). tRNA(Sec) lacking the single-stranded 3'-acceptor end ((ΔGCCA)RNA(Sec)) yielded a crystal structure at 2.0 Å resolution. The global structure of (ΔGCCA)RNA(Sec) resembles the structure of human tRNA(Sec) determined at 3.1 Å resolution. Structural comparisons revealed flexible regions in tRNA(Sec) used for induced fit binding to selenophosphate synthetase. Water molecules located in the present structure were involved in the stabilization of two alternative conformations of the anticodon stem-loop. Modeling of a 2'-O-methylated ribose at position U34 of the anticodon loop as found in a sub-population of tRNA(Sec)in vivo showed how this modification favors an anticodon loop conformation that is functional during decoding on the ribosome. Soaking of crystals in Mn(2+)-containing buffer revealed eight potential divalent metal ion binding sites but the located metal ions did not significantly stabilize specific structural features of tRNA(Sec).We provide the most highly resolved structure of a tRNA(Sec) molecule to date and assessed the influence of water molecules and metal ions on the molecule's conformation and dynamics. Our results suggest how conformational changes of tRNA(Sec) support its interaction with proteins
Genetic analysis of selenocysteine biosynthesis in the archaeon Methanococcus maripaludis
In Archaea selenocysteine (Sec) is synthesized in three steps. First seryl-tRNA synthetase acylates tRNA(Sec) with serine to generate Ser-tRNA(Sec). Then phosphoseryl-tRNA(Sec) kinase (PSTK) forms Sep-tRNA(Sec), which is converted to Sec-tRNA(Sec) by Sep-tRNA:Sec-tRNA synthase (SepSecS) in the presence of selenophosphate produced by selenophosphate synthetase (SeID). A complete in vivo analysis of the archaeal Sec biosynthesis pathway is still unavailable, and the existence of a redundant pathway or of a rescue mechanism based on the conversion of Sep-tRNA(Sec) to Cys-tRNA(Sec) during selenium starvation, cannot be excluded. Here we present a mutational analysis of Sec biosynthesis in Methanococcus maripaludis strain Mm900. Sec formation is abolished upon individually deleting the genes encoding SeID, PSTK or SepSecS; the resulting mutant strains could no longer grow on formate while growth with H(2) + CO(2) remained unaffected. However, deletion of the PSTK and SepSecS genes was not possible unless the selenium-free [NiFe]-hydrogenases Frc and Vhc were expressed. This required the prior deletion of either the gene encoding SeID or that of HrsM, a LysR-type regulator suppressing transcription of the frc and vhc operons in the presence of selenium. These results show that M. maripaludis Mm900 is facultatively selenium-dependent with a single pathway of Sec-tRNA(Sec) formation
Interactive online survey raises awareness about cornea donation
Objective To assess the impact of a 5 min interactive online survey on raising awareness about cornea donation and willingness to become a donor. Methods An interactive online questionnaire was used to collect information regarding awareness, perceptions and attitudes towards cornea donation and to educate the participants about the process and value of cornea donation. Willingness to become a cornea donor was assessed at the beginning and the end of the survey. Results The survey was completed by 1769 Greek residents. Willingness to become a cornea donor increased from 40.5% (n=717) at the beginning of the survey to 55.2% (n=977) by the end of it (p<0.00001). Younger participants, those whose work or studies were unrelated to the medical field, and those with the least knowledge about cornea donation and transplantation were more likely to change their views towards donation by the end of the survey (42.3%, 44.8% and 82.1% increase in willingness to donate, respectively). Major deterrents to donation were lack of information, concerns about the use of the donated corneas and corruption within the medical field. Conclusion Our 5 min online survey had a significant impact on changing the mentality towards cornea donation in Greece. We live in an online era and incorporation of online tools and applications in awareness campaigns towards cornea and organ donation has become a necessity. © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ
A tRNA-dependent cysteine biosynthesis enzyme recognizes the selenocysteine-specific tRNA in Escherichia coli
The essential methanogen enzyme Sep-tRNA:Cys-tRNA synthase (SepCysS) converts O-phosphoseryl-tRNA(Cys) (Sep-tRNA(Cys)) into Cys-tRNA(Cys) in the presence of a sulfur donor. Likewise, Sep-tRNA:Sec-tRNA synthase converts O-phosphoseryl-tRNA(Sec) (Sep-tRNA(Sec)) to selenocysteinyl-tRNA(Sec) (Sec-tRNA(Sec)) using a selenium donor. While the Sep moiety of the aminoacyl-tRNA substrates is the same in both reactions, tRNA(Cys) and tRNA(Sec) differ greatly in sequence and structure. In an Escherichia coli genetic approach that tests for formate dehydrogenase activity in the absence of selenium donor we show that Sep-tRNA(Sec) is a substrate for SepCysS. Since Sec and Cys are the only active site amino acids known to sustain FDH activity, we conclude that SepCysS converts Sep-tRNA(Sec) to Cys-tRNA(Sec), and that Sep is crucial for SepCysS recognition. (C) 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved
How an Obscure Archaeal Gene Inspired the Discovery of Selenocysteine Biosynthesis in Humans
Selenocysteine (Sec) is the 21st genetically encoded amino acid found in organisms from all three domains of life. See biosynthesis is unique in that it always proceeds from an aminoacyl-tRNA precursor. Even though See biosynthesis in bacteria was established almost two decades ago, only recently the pathway was elucidated in archaea and eukaryotes. While other aspects of Sec biology have been reviewed previously (Allmang and Krol, Biochimie 2006;88:1561-1.571, Hatfield et al., Prog Nucleic Acid Res Mol Biol 2006;81:97-142, Squires and Berry, IUBMB Life 2008;60:232-235), here we review the biochemistry and evolution of Sec biosynthesis and coding and show how the knowledge of an archaeal cysteine biosynthesis pathway helped to uncover the route to Sec formation in archaea and eukaryotes. (C) 2008 IUBM
Distinct genetic code expansion strategies for selenocysteine and pyrrolysine are reflected in different aminoacyl-tRNA formation systems
Selenocysteine and pyrrolysine, known as the 21st and 22nd amino acids, are directly inserted into growing polypeptides during translation. Selenocysteine is synthesized via a tRNA-dependent pathway and decodes UGA (opal) codons. The incorporation of selenocysteine requires the concerted action of specific RNA and protein elements. In contrast, pyrrolysine is ligated directly to tRNA(Pyl) and inserted into proteins in response to UAG (amber) codons without the need for complex re-coding machinery. Here we review the latest updates on the structure and mechanisms of molecules involved in Sec-tRNA(Sec) and Pyl-tRNA(Pyl) formation as well as the distribution of the Pyl-decoding trait. (C) 2009 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved
Chronic inflammatory diseases, myocardial function and cardioprotection
The association between chronic inflammatory diseases (CIDs) and increased cardiovascular (CV) risk is well documented and can be a most threatening complication in these patients. However, the pathogenetic mechanisms underlying increased CV risk remain elusive, especially in their cellular and biochemical pathways. Using animal models to understand mechanisms underlying cardiac involvement are limited. Additionally, treatments may influence cardiovascular events through different outcomes. Some drugs used to treat CIDs can negatively affect cardiac function by a direct toxicity, whereas others may protect the myocardium. In the present article, we focus on the cardiac manifestations and risk factors, the pathogenetic mechanisms, and the effect of treatments on myocardial function and cardioprotection for five common worldwide CIDs (rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, psoriasis and inflammatory bowel disease). We also give recommendations in order to evaluate common targets between CID and CV disease (CVD) and to design therapies to alleviate CID-related CVD. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc. © 2020 The British Pharmacological Societ
Chronic inflammatory diseases, myocardial function and cardioprotection
© 2020 The British Pharmacological Society The association between chronic inflammatory diseases (CIDs) and increased cardiovascular (CV) risk is well documented and can be a most threatening complication in these patients. However, the pathogenetic mechanisms underlying increased CV risk remain elusive, especially in their cellular and biochemical pathways. Using animal models to understand mechanisms underlying cardiac involvement are limited. Additionally, treatments may influence cardiovascular events through different outcomes. Some drugs used to treat CIDs can negatively affect cardiac function by a direct toxicity, whereas others may protect the myocardium. In the present article, we focus on the cardiac manifestations and risk factors, the pathogenetic mechanisms, and the effect of treatments on myocardial function and cardioprotection for five common worldwide CIDs (rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, psoriasis and inflammatory bowel disease). We also give recommendations in order to evaluate common targets between CID and CV disease (CVD) and to design therapies to alleviate CID-related CVD. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc