194 research outputs found

    Configuration interaction wave functions: A seniority number approach

    Get PDF
    This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure.Fil: Alcoba, Diego Ricardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FĂ­sica de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de FĂ­sica; ArgentinaFil: Torre, Alicia. Universidad del Pais Vasco; EspañaFil: Lain, Luis . Universidad del Pais Vasco; EspañaFil: Massaccesi, Gustavo Ernesto. Universidad de Buenos Aires. Ciclo BĂĄsico ComĂșn; ArgentinaFil: Oña, Ofelia Beatriz. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico la Plata. Instituto de Investigaciones FisicoquĂ­micas TeĂłricas y Aplicadas; Argentin

    Entanglement of electrons in interacting molecules

    Get PDF
    Quantum entanglement is a concept commonly used with reference to the existence of certain correlations in quantum systems that have no classical interpretation. It is a useful resource to enhance the mutual information of memory channels or to accelerate some quantum processes as, for example, the factorization in Shor's Algorithm. Moreover, entanglement is a physical observable directly measured by the von Neumann entropy of the system. We have used this concept in order to give a physical meaning to the electron correlation energy in systems of interacting electrons. The electronic correlation is not directly observable, since it is defined as the difference between the exact ground state energy of the many--electrons Schroedinger equation and the Hartree--Fock energy. We have calculated the correlation energy and compared with the entanglement, as functions of the nucleus--nucleus separation using, for the hydrogen molecule, the Configuration Interaction method. Then, in the same spirit, we have analyzed a dimer of ethylene, which represents the simplest organic conjugate system, changing the relative orientation and distance of the molecules, in order to obtain the configuration corresponding to maximum entanglement.Comment: 15 pages, 7 figures, standard late

    Seniority number in spin-adapted spaces and compactness of configuration interaction wave functions

    Get PDF
    This work extends the concept of seniority number, which has been widely used for classifying N-electron Slater determinants, to wave functions of N electrons and spin S, as well as to N-electron spin-adapted Hilbert spaces. We propose a spin-free formulation of the seniority number operator and perform a study on the behavior of the expectation values of this operator under transformations of the molecular basis sets. This study leads to propose a quantitative evaluation for the convergence of the expansions of the wave functions in terms of Slater determinants. The non-invariant character of the seniority number operator expectation value of a wave function with respect to a unitary transformation of the molecular orbital basis set, allows us to search for a change of basis which minimizes that expectation value. The results found in the description of wave functions of selected atoms and molecules show that the expansions expressed in these bases exhibit a more rapid convergence than those formulated in the canonical molecular orbital bases and even in the natural orbital ones.Fil: Alcoba, Diego Ricardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FĂ­sica de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de FĂ­sica; ArgentinaFil: Torre, Alicia. Universidad del PaĂ­s Vasco. Facultad de Ciencia y TecnologĂ­a. Departamento de QuĂ­mica FĂ­sica; España;Fil: Lain, Luis. Universidad del PaĂ­s Vasco. Facultad de Ciencia y TecnologĂ­a. Departamento de QuĂ­mica FĂ­sica; España;Fil: Massaccesi, Gustavo Ernesto. Universidad de Buenos Aires. Ciclo BĂĄsico ComĂșn; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de MatemĂĄtica; ArgentinaFil: Oña, Ofelia Beatriz. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico la Plata. Instituto de Investigaciones FisicoquĂ­micas TeĂłricas y Aplicadas; Argentin

    Many-body-QED perturbation theory: Connection to the Bethe-Salpeter equation

    Full text link
    The connection between many-body theory (MBPT)--in perturbative and non-perturbative form--and quantum-electrodynamics (QED) is reviewed for systems of two fermions in an external field. The treatment is mainly based upon the recently developed covariant-evolution-operator method for QED calculations [Lindgren et al. Phys. Rep. 389, 161 (2004)], which has a structure quite akin to that of many-body perturbation theory. At the same time this procedure is closely connected to the S-matrix and the Green's-function formalisms and can therefore serve as a bridge between various approaches. It is demonstrated that the MBPT-QED scheme, when carried to all orders, leads to a Schroedinger-like equation, equivalent to the Bethe-Salpeter (BS) equation. A Bloch equation in commutator form that can be used for an "extended" or quasi-degenerate model space is derived. It has the same relation to the BS equation as has the standard Bloch equation to the ordinary Schroedinger equation and can be used to generate a perturbation expansion compatible with the BS equation also for a quasi-degenerate model space.Comment: Submitted to Canadian J of Physic

    Review of biorthogonal coupled cluster representations for electronic excitation

    Full text link
    Single reference coupled-cluster (CC) methods for electronic excitation are based on a biorthogonal representation (bCC) of the (shifted) Hamiltonian in terms of excited CC states, also referred to as correlated excited (CE) states, and an associated set of states biorthogonal to the CE states, the latter being essentially configuration interaction (CI) configurations. The bCC representation generates a non-hermitian secular matrix, the eigenvalues representing excitation energies, while the corresponding spectral intensities are to be derived from both the left and right eigenvectors. Using the perspective of the bCC representation, a systematic and comprehensive analysis of the excited-state CC methods is given, extending and generalizing previous such studies. Here, the essential topics are the truncation error characteristics and the separability properties, the latter being crucial for designing size-consistent approximation schemes. Based on the general order relations for the bCC secular matrix and the (left and right) eigenvector matrices, formulas for the perturbation-theoretical (PT) order of the truncation errors (TEO) are derived for energies, transition moments, and property matrix elements of arbitrary excitation classes and truncation levels. In the analysis of the separability properties of the transition moments, the decisive role of the so-called dual ground state is revealed. Due to the use of CE states the bCC approach can be compared to so-called intermediate state representation (ISR) methods based exclusively on suitably orthonormalized CE states. As the present analysis shows, the bCC approach has decisive advantages over the conventional CI treatment, but also distinctly weaker TEO and separability properties in comparison with a full (and hermitian) ISR method
    • 

    corecore