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A new formulation of the many-electron correlation problem is presented based on the use of
parastatistics. It is shown that second-order para-Fermi creation and annihilation operators, which

correspond to the creation and annihilation of spin-averaged paraparticles, occur naturally for the
spin-independent many-electron problem. Moreover, the spin-independent many-electron Hamil-

tonian is directly expressible in terms of the parafield operators. The structure of the general para-
Fermi algebra is also investigated from the viewpoint of the pseudo-orthogonal group O(2n +1, 1).
Finally, an exphcit matrix representation for the para-Fermi algebra of order 2, which enables one
to handle even particle-number-nonconserving operators, is obtained in a canonical U(n)-adapted
basis.

I. INTRODUCTION

In this paper we investigate the spin-independent
many-electron correlation problem. Currently, one of the
most often used techniques in going beyond the Hartree-
Fock approximation, at least for atomic and molecular
systems, is the well-known shell model or configuration-
interaction (CI) approach. This is not only due to its con-
ceptual simplicity, its universality, and the developments
in computing technology, but also due to certain meth-
odological advances which made it possible to perform
large-scale CI computations and thus to partially over-
come a slow convergence of this procedure. One particu-
larly successful development in this respect is currently
known as the unitary group approach (UGA). ' lt is
based on earlier developments in the nuclear many-body
problem due to Moshinsky as well as on relatively recent
advances in the representation theory of compact Lie
groups. ' It may also be regarded as an outgrowth of the
spin-free formulation due to Matsen.

The UGA to the many-electron correlation problem ex-
ploits the fact that the spin-independent many-electron
Hamiltonian is expressible as a bilinear form in the orbital
(or spin-free) U(n) generators. This enables one to
develop efficient methods for Hamiltonian matrix-element
evaluation using known ' matrix-element formulas for
the U(n} generators. This latter problem dates back to the
original work of Gelfand and Tsetlin and Baird and
Biedenharn, who developed explicit formulas for the ma-
trix elements of U(n} generators in the Gelfand-Tsetlin
basis of any irreducible representation of U(n) (see also
Ref. 9). The general formalism of Refs. 5, 6, and 9 con-
siderably simplifies for the many-electron problem since
only the representations of U(n) with at most two
columns in the Young tableau need be considered. This
simplification, first exploited by Paldus, ' together with
its graphical representation due to Shavitt, has led to the
development of numerous computational implementations
ranging from the integral-driven, ' loop-driven„" shape, '

or internal interaction block-driven' approach to matrix-

element-driven approach' based on harmonic level excita-
tion diagrams.

It is our aim here to investigate the many-electron
correlation problem from the viewpoint of parastatistics,
first introduced by Green' as a general scheme of quanti-
zation which includes normal Fermi and Bose statistics as
a special case. This generalized method of field quantiza-
tion has been made the subject of numerous investiga-
tions' since its inception. ' However, Greenberg and
Messiah have shown that no presently known particle
can be para. In spite of Nature's apparent preference for
Fermi or Bose statistics, there has come an increasing ap-
preciation of the structure of para-Bose and para-Fermi
algebras. It was shown by Kamefuchi and Takahashi '

and Ryan and Sudarshan that all unitary irreducible rep-
resentations of the para-Fermi (or para-Bose} algebra cor-
respond to unitary representations of the orthogonal (or
symplectic) group. Not all such representations are ap-
propriate to the description of paraparticles since we are
usually restricted to the (unique) Fock-space representa-
tion which, in the case of the para-Fermi algebra of order

p, as discussed in this paper, corresponds to the pth spinor
representation of the orthogonal group O(2n+1). The
Fock-space representations of these algebras have been in-
vestigated in the para-Bose case by Alabiso, Duimio, and
Redondo and in the para-Fermi case by Bracken and
Green. The representations of these algebras have also
been analyzed from the viewpoint of the symmetric group
by Ohnuki and Kamefuchi. General results on realiza-
tions of Lie algebras in terms of parafield operators and
interrelationships between representations of parafield
operators of different types have been obtained by Ka-
demova et al. A detailed account of parastatistics and
its applications in quantum field theory can be found in
Refs. 18 and 27.

This paper is an extension of an earlier investigation 8

in which we demonstrated that the recently introduced
Clifford algebra UGA (CAUGA) formalism may be
described in terms of the para-Fermi algebra. In this pa-
per it is demonstrated, using the ansatz originally pro-

1986 The American Physical Society



PARA-FERMI ALGEBRAS AND THE MANY-ELECTRON. . . 805

posed by Green, ' that parafermions of order 2 may be ex-

plicitly constructed for the spin-independent many-
electron problem. The parafermion creation operators
may be interpreted as creating a spin-averaged paraparti-
cle. Moreover, it is shown that the spin-independent
many-electron Hamiltonian is expressible as a bilinear
form in the U(n) generators which occur as those second-
order operators in the para-Fermi algebra preserving the
number of paraparticles. In this sense it is seen that
parafermions of order 2 occur naturally for the spin-
independent many-electron correlation problem. The
states of such a system may then be expressed as a polyno-
mial in the para-Fermi creation operators acting on the
vacuum state. This procedure thereby affords an alterna-
tive spin-independent approach to the molecular correla-
tion problem and opens up the possibility of exploiting
previous work on para-Fermi algebras.

In our approach we find it both convenient and natural
to introduce the pseudo-orthogonal group O(2n+I, 1)
into the para-Fermi algebra. It transpires that the "sta-
tistical quantum number" of Ohnuki and Kamefuchi,
which occurs as an O(2n) labeling invariant in the work
of Bracken and Green, corresponds to a Cartan genera-
tor of the group O(2n +1, 1). This procedure thereby af-
fords a generalization of Bracken and Green's work to
certain non-Fock-space representations. We note, in this
connection, that non-Fock-space representations for
parafermions of order 2 and the introduction of a
pseudo-orthogonal group O(2n +1, 1) (which is different
from the one used in this paper) were considered by
Carey'9 in his investigation on the leptons.

We should also note that the formalism developed in
this paper may be extended to other quantum-mechanical
systems of interest in physics. For example, in treating
spin- and isospin-independent interactions in nuclear
physics, parafermions of order 4 naturally appear. The
work of this paper may also be extended to many-boson
problems, in which case one is concerned with the ap-
propriate para-Bose algebra and representations of the
symplectic group We in. ention also the possibility of
treating composite systems of bosons and fermions, which
occur, for example, in investigating vibronic modes in
molecules or Frohlich s electron-phonon interaction in
solids, where I.ie superalgebras will naturally occur. Fi-
nally, we note that effective algorithms for matrix-
element evaluation of the O(2n+I) generators [in a
U(n)-adapted basis] might be of use in treating particle
nonconserving operators, which are required to handle
various electron attachment or detachment processes such
as simple or multiple ionization or electron capture phe-
nomena. In our approach, this latter problem is
equivalent to that of obtaining a matrix representation of
the parafield operators in a U(n) basis. This problem is
considered, in the Fock-space representation, for parafer-
mions of order 2 in Sec. V.

The paper is set up as follows. The structure of the
general para-Fermi algebra is outlined in Sec. II and the
pseudo-orthogonal group O(2n+I, 1) is introduced in
Sec. III. A parastatistical approach to the spin-
independent many-electron problem is then developed in
Sec. IV. The concluding Sec. V gives a matrix representa-

tion for the parafermion algebra of order 2 in a U(n)-
adapted basis as already mentioned.

If gp (=g~} denotes the inverse metric, we may raise
and lower indices according to

a =g a, a&
——g~aP —P 0'

etc. In this notation the para-Fermi defining relations,
Eq. (1), may be expressed in a unified notation as follows:

[ap~ [ p~a v)] 2(gppa v gpvap }

It now easily follows that the operators
1

apv i [ap~av]

satisfy the relations

[riprap] gpva p gppav ~

[&pea'po] =gvp&pn+gpa&vp gpp&vrr gvu&pp &

(4)

(Sa)

similarly as in the CAUGA [cf. Eqs. (11) and (S) of Ref.
29], so that the operators a„Eq. (4}, constitute the gen-
erators of the group O(2n) whilst the operators

Qp~ ap/v 2

constitute the generators of the group O(2n+1). It fol-
lows, therefore, that the (unitary) irreducible representa-
tions of the para-Fermi algebra are to comprise finite-
dimensional irreducible representations of the group
O(2n +1) with infinitesiinal generators (6).

The Pock-space representation is characterized as that
representation which admits a unique vacuum state

~
0)

defined by the conditions

a;~0)=0, i=1, . . . , n . (7a)

It may be shown that the vacuum state
~
0) must also

satisfy the conditions

II. PARA-FERMI ALGEBRA OF ORDER p

The annihilation operators a; and creation operators
a'=a; (i =1, . . . , n) for parafermions of arbitrary order
satisfy'6

[a' [aj akl]=0

[a;,[a',ak]) =2&;ak,

[a; [aj,a "])=2(P;a" Sk;—aj),
as well as relations conjugate to these.

The irreducible (unitary) representations of the para-
Fermi algebra (1} are known to correspond to finite-
dimensional irreducible representations of the orthogonal
group O(2n+I). To see this, we define para-Fermi
operators ap for p= 1, . . . , 2n according to

a-,.=a', i=~+n, i =1, . . . , n .

We then introduce the O(2n) metric g~ defined by
1

1 if ~p (r~—=n
Spa=Sap= '

0 otherwise .
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a;a i0)=pt; i0), (7b)

for some positive integer p, which is called the a««of
the parastatistics. Thus, for parastatistics of a given order

p there exists a unique Pock-space representation: This is
the representation of interest in physical applications. It
is important to note that in addition to the relations (3),
parafermions obey extra relations which depend on the or-
der p of the statistics. For example, parafermions of or-
der p always satisfy the conditions

a &+'=O
P

as well as additional relations which may be found in the
work of Bracken and Green. 2 We note that parafermions
of order 1 correspond to normal fermions.

Throughout this paper, unless otherwise stated, we shall
be working in the Fock-space representation for para-
statistics of a fixed order p, i.e., we assume the existence
of a unique vacuum state ~0) satisfying Eqs. (7a) and
(7b). The corresponding Hilbert space of para-Fermi
states (i.e., the parafermion Pock space), herein denoted
P ~, is given by all polynomials in the para-Fermi creation
operators acting on the vacuum state

~

0).
As a Cartan subalgebra of O(2n+1) [and O(2n)] we

choose the operators

The irreducible representations of U(n) occurring in the
O{2n) representation with the highest weight A& have
highest weights A, satisfying Eq. (9) and the additional
condition

q= —g ( —1)'A, . (10a)

q for n even

p —q for n odd.
(10b)

The O(2n) invariant q is the statistical quantum number
appearing in the work of Ohnuki and Kamefuchi.

The group O(2n) admits the second-order Casimir in-
variant {the summation convention over repeated indices
is now implied}

which takes a constant value in the irreducible representa-
tion with highest weight A~ given by

crz —pn(n +p/2 —1)—2b, ,

where

~=q{p q) =q{p ——q) . (12)

which serve to uniquely hbel the weights of O(2n + 1). It
is easily seen" that the vacuum state

~
0) constitutes a

(unique) minimal weight state of O(2n +1)weight:

( —p/2, —p/2, . . . , —p/2) .

It thus follows that the space of para-Fermi states P~ is
to constitute the irreducible representation of O(2n+1)
with highest weight:

(p/2, p/2, . . . ,p/2) .

The particle-number-conserving operators b',
b') ———,

' [a',aj ],
form the generators of the unitary subgroup U(n) of
O(2n). However, following Bracken and Green, 2 we
shall work instead with the shifted U(n) generators

E'J = —,
' [a',a) ]+ ,

' p5'J, —

where p is the order of the parastatistics. The Fock space
W& possesses the remarkable property that it decomposes
into a direct sum of irreducible representations of U(n)
with highest weights of the form A, =(A, &, A,z, . . . , A,„)
where

cr2 pn(n +——p/2) . (13}

We note that the operator b, of Eq. (12) may be alterna-
tively expressed as

,' {ai,a-&I ,
' np—, —

which is equivalent to

i {ap, a ~ ] =cT2
—cT2 = 2LL +np (14)

Although the operator q of Eq. (10) is an O(2n) invari-
ant, it is not an invariant of O(2n+1). In fact, the
creation or annihilation operator a can only increase or
decrease one of the weights by one unit and may thus be
separated into the vector operators a + and a of O(2n)
which, respectively, increase and decrease the eigenvalue q
by one unit, so that

a =a ++a

The group O(2n +1}also admits a second-order Casimir
invariant

1~2=~2+ i {a,a'I

which has an eigenvalue given by

p&k~&A2& - &k &0

and all such representations occur exactly once. ' In
other words, aB irreducible representations of U(n) with
no more than p columns in the Young tableau occur in
P ~ with unit multiplicity.

The Fock space also decomposes into a direct sum of ir-
reducible representations of O(2n) with highest weights

A~=(p/2, p/2, . . . ,p/2„p/2 q), 0&q &p . —

[q,a +]=+a
so that

[q,a ]=a +—a

The a + msy be explicitly constructed using the rela-
tions

a p~ =(n —1+—,'11)a
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where

—,
' II=q —p/2 .

Following Bracken and Green we set

(17)

and note that these operators satisfy the Hermiticity con-
dition

(bi') =cz g~——c

It may be directly shown, with some work, that the
operators (17) satisfy the commutation relations

a; i0)=0,

a;a'
~
0) =a;at,

~
0) =p5;J

~
0), ij =1, . . . , n

as required of parastatistics of order p. This demonstrates
that the Green ansatz, Eq. (19), may be employed for the
Fock-space representation of parastatistics (cf. Ref. 20).

Following our previous notation we define fermion
operators a z for p= 1, . . . , 2n according to the conven-
tion

a —,.=(a };, i=i+n, i =1, . . . , n .

[bi', b ]=[c~,c ]=0,
[b~,c ]= [b~,c—l']=aI

(18)

With this notation, the Green ansatz, Eq. (19), may be
written as follows,

where, in our previous notation, ai = —,
' [ai', a ]. The en-

tire para-Fermi algebra may thus be described in terms of
the operators (17) and their commutation relations, Eq.
(18). We shall now present an alternative description of
these results in terms of the pseudo-orthogonal group
0(2n +1, 1}.

III. PSEUDO-ORTHOGONAL GROUP FORMULATION

In order to introduce the pseudo-orthogonal roup
0(2n+1, 1) we consider the Green representation 6 ac-
cording to which parafermion annihilation operators are
expressible as follows,

Qa;= Q
$ p l p ~ ~ ~ (19)

where the a; constitute p commuting sets of ordinary
fermion annihilation operators

[a;,a ~J ]=[a;,(a t)PJ ]=0, a~P
(20)

[a;,a'i) =0, Ia;,(at) J J =5;,.

together with relations conjugate to these. We note that
with the Green ansatz, Eq. (19), our U(n) generators E'J,
Eq. (8), are expressible as

E'J = —,
' [a',a ]+—,'p5'.

= —,
' $ f((a') „a,.]+(»',. (

a=1

= f (a»};a, .

[a'~,a~~]=0, a&P

ta, ,a .I =gp,
where g~ is the 0(2n) metric, Eq. (2).

We now consider the family of operators n,
5

&c—g [(a )~(»a il»

(23)

(24)

The relations of Eq. (23) imply the following properties of
the operators (24):

2=17T~

re.~,a'~) =0, [~,np]=0,

[rr,a~~]=0, a~P
n'

i
0) =(—1)"

i
0) .

(2S)

It easily follows from Eqs. (23) and (25) that for each a
the operators

n l2, a~&/W2, [a z, a ]l2, [ir~,a z]/2v 2 (26)

satisfy the commutation relations of an 0(2n +1, 1)
group (see Appendix), herein denoted 0 (2n +1, 1). The
diagonal subgroup of the product group,

0 (2n+1, 1),
a=1

is the 0(2n +1, 1) group with infinitesimal generators

aap= Q

and the relations (20} may be expressed in the unified
orm

Throughout we assume the existence of a unique vacu-
um state

~
0) on which all the fermion annihilation opera-

tors a; vanish, i.e.,

m/2, aviv 2, [a~,a ]/2, [~,a ]/2v 2,
where

(27)

a; ~0) =0, a=1, . . . ,p, i=1, . . . , n . (22) a=1

It is easily verified that the para-Fernu operators
az (p = 1, . . . , 2n ), as defined by Eq. (19) with
a-, =a'=at; for i =. i +n (i =1, . . . , n), satisfy the com-
mutation relations, Eq. (3}. Moreover, as a consequence
of Eqs. (20) and (22},we have that

The operator &/2 is the [O(2n)-invariant] Cartan genera-
tor of 0(2n+1, 1} (cf. Appendix). We note that the
0(2n+1, 1) commutation relations are a direct conse-
quence of the following relations satisfied by the operator
& (see Appendix}:
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[[ap,a ],&]=0,

[&,[S.,a~]]=4a~,

[[n,a ],a~]=2g~& .

The action of the Cartan generator &/2 on the vacuum
state ~0} is given by

(&/2)
~

0}=(—1)"(p/2) ~0&,

and it is easily verified that the vacuum state
~
0}consti-

tutes an O(2n+1, 1) minimal weight state of weight
( —p/2„—p/2, . . . , —p/2, ( —1)"p/2). It follows from
this that the Fock space P~ carries the irreducible repre-
sentation of O(2n + 1, 1) with highest weight
(p/2, . . . ,p/2, +p/2) for n odd (even). It is interesting
to note that the operators

a p= i [&,ap]

also constitute a system of parafermions of order p such
that

[a p~anl=gpcr~ ~

Since the Cartan generator (&/2) is an O(2n) invariant,
it follows from. Schur's lemma that it must reduce to a
scalar multiple of the identity on each of the O(2n) ir-
reducible representations occurring in W~. The eigen-
value of &/2 on the irreducible representation of O(2n)
with lllgllest weiglit Aq = (p /2, . . . ,p /2, p /2 —q )

(q =0, . . . ,p) is easily seen to be given by

q —p/2, n even

p/2 —q, n odd.

In terms of the statistical quantum number q of Eq. (10)
we may therefore write

—,
' Il=q —p/2

in agreement with the notation of Eq. (16).
We conclude from this that the statistical quantum

number q of Ohnuki and Kamefuchi ' corresponds (up to
a scalar shift) with the Cartan generator (&/2) of
O(2n +1, 1). Moreover, using the commutation relations,
Eqs. (28), it is easily seen that the O(2n} vectors defined
by

a + ———,'(a +[&/2, a ])

satisfy the relations

[m/2, a +]=—,'([&/2, a ]+[&/2, [&/2, a ]])
= —,([&/2, a ]+a ),

[&/2, a +]=+a + .

It thus follows that the operators a + constitute
O(2n+1, 1) root vectors which increase (decrease) the
eigenvalue of (&/2) by one unit. The operators a + clear-
ly correspond to the O(2n) shift vectors of Eq. (15).
Indeed, in view of Eq. (16) we may alternatively write

IV. THE MANY-ELECTRON PROBLEM
AND PARASTATISTICS OF ORDER 2

In the many-electron problem, as formulated in current
orbital theories, we start with 2n atomic or molecular spin
orbitals

~
ia} (i =1, . . . , n, (z=+), which span the one-

electron space W~ employed and build the many-electron
space as an appropriate antisymmetric component of the
¹h-rank tensor product &i~ . In the second quantiza-
tion formalism we associate with an orthonormal spin or-
bital basis t ~ia}] the fermion annihilation operators X;
and their adjoints (X )~; representing corresponding crea-
tors, which satisfy the anticommutation relations

Ix xi'
j =I(x') (x')i'

I =0
(29)

I X, ,(x'))', I =8 ('5,,
The spin-independent Hamiltonian H describing a given
many-electron system is then expressible as a bilinear
form in the (orbital) U(n) generators

gi (xt)(+) x(+) +(xt)(—) x( —) (30)

namely (cf., e.g. , Ref. 1)

H = g (,i
~

z
~j )E'J.

+—g ((j
~

kl)(E' EJ"', 5"JE',), —
i,j,k, l

(31)

where the coefficients (ij
~

kl) are given by the two-
electron integrals'

(ig
~

kl) =(i (l)k(2)
~

U ~g(1)l(2) } .

Following our previous notation we define fermion
operators X z, p= 1, . . . , 2n, as follows:

X —,. =(X );, i=i+n, i=1, . . . , n .

%ith this convention the anticommutation relations, Eqs.
(29), may be rewritten as

[x;,x('. I =8 i'g

where g~ is the O(2n) metric, Eq. (2). In order to see the
connection with parastatistics, we follow Sm. III and in-
troduce the operators

n

m = g (Xt);,X;], a=+ . (32)

a + ———,'(a +[q —p/2, a ])

=-, (a +[q,a ]),
in agreement with Eq. (15). The commutation relations of
Eq. (18) are then easily seen to follow from the
O(2n + 1, 1) commutation relations.

In conclusion, we note that our approach applies to any
(unitary) representation of the para-Fermi algebra on
which the Green ansatz, Eq. (19), holds. It is also in-
teresting to note that the results of this section may be ob-
tained independently of the Green ansatz, Eq. (19},by ex-
tending the para-Fermi algebra to include a self-adjoint
operator n satisfying the relations of Eq. (28).
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Then it is easily seen that the operators ir are self-adjoint
and satisfy the relations [cf. Eq. (25)]

m~ =1, [n~, np]=0,

{ir,X pj=0, [m,X~p]=0, a~P
~.~o)=( —1)"~o),

(33)

where
~
0) designates the unique physical vacuum state.

%e next examine the operator

which possesses the following properties:

e'=e, e'=1,
{8X }=0, 8~0)= ~0), (34)

we find them to satisfy the following relations:

{a p~a n] =gpo ~

[a p, a~ ]=0, a&P.
(36)

Thus, the operators a p, Eq. (35), constitute two commut-
ing sets of fermions. It follows, therefore, in view of the
Green ansatz, Eq. (19), that the operators

(+) ( —)
a&

——a' &+a z, p= 1, . . . , 2n (37)

constitute a set of parafermion operators of order 2.
The relations, Eqs. (34), also imply that the operators

~, Eq. (32), may be alternatively expressed in terms of
the fermion operators defined by Eq. (35), namely

n a;,a;, a=+

in agreement with the notation of Eq. (24). In particular,
we see that the operator &/2, with

(38)

constitutes the Cartan generator of the group O(2n + 1, 1)
with infinitesimal generators

&/2, apl' 2, a~=[ap, a ]l2, [&,ap]I2~2.
The operator 8, Eq. (34), may be expressed in terms of
the operator m according to

& =2(1+8} or 8= —,'S. —1 .

In the notation of Sec. II, the orbital U(n) generators
E'1, Eq. (30), may be expressed as

E'J. = —,
' [a',aj ]+5'J. , (39)

in agreement with Eq. (18) for parafermions of order 2
(cf., also Ref. 29). Indeed, we have in view of Eq. (21)
that

as may be readily verified using the relations (33). Thus,
defining new creation and annihilation operators a~ (here
we employ the notation of prix:eding sections),

a'+' =X'+)
(35)

' [a( a ]+@' (at)(+) a(+) +(at)( —) a( —)

(Xt)(+ ) X(+ ) + (X t)( —) 82X( —)

(Xt)(+) X(+) +(X(}(—) X(—)

obtaining the U(n) generators of Eq. (30) as required.
The above demonstrates that the spin-independent

many-electron Hamiltonian may be expressed in terms of
the para-Fermi operators ap, Eq. (37), by virtue of Eqs.
(31) and (39}. The states for such a system are then given
by all polynomials in the para-Fermi creation operators
a; acting on the vacuum state

~
0), i.e., the para-Fermi

Fock space W2.
In this sense we see that parafermions of order 2 occur

naturally in our formulation of the spin-independent
many-electron problem. The para-Fermi creation opera-
tors a; may be regarded as creating a spin-averaged para-
particle of type i. This allows the possibility of exploiting
the structure of the second-order para-Fermi algebra. In
particular, it follows from the representation theory of
such algebras, as outlined in Sec. II, that all at most two-
column representations of U(n) occur once and exactly
once in the Fock space Wi. This implies that the only
representations of U(n) which are pertinent to the spin-
independent many-electron problem are those with at
most two columns in the Young tableau, as in other ap-
proaches. '3'

It should be noted that in addition to the relations (3),
parafermions of order 2 also obey the relations'

a„apa „+a ~pa„=2(ga „+g~a„), (40)

(+) 1X + = , n. {ir,a I
= , n+[n—+,ap], —.

which uniquely determine the structure of the second-
order para-Fermi algebra. We may interpret Eq. (40) as
the generalized Pauli principle for paraparticles. It im-

plies, among other things, that

3
a~ ——0,

i.e., no more than two paraparticles of order 2 can occupy
the same state.

We also note that the parafermion operators ap, Eq.
(37), may be alternatively expressed as

a;=X'+';+ —,'[8,X' ';], i=1, . . . , n

together with conjugate relations. It follows from symme-

try in ( + ) and ( —) labels that the operators

a, =-,'[8,X(+),]+X(-),, i=1, . . . , n

also constitute a system of para-Fermi annihilation opera-
tors. The above two para-Fermi algebras are clearly relat-
ed by

a;= —,'[8 a;], i=1, . . . , n

and hence give rise to the same para-Fermi Fock space
W2 and the same U(n) generators E'~, Eq. (30).

To recover the original set of fermion operators X p
(p = 1, . . . , 2n, a = +) from the parafermion operators ap,
Eq. (37), we can employ the following relations:
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which may be verified with the help of Eqs. (33), (34), and

(37). Finally, with regard to spin-dependent problems, we

may recover the spin U(2) generators according to'

a [r]'. [a,b,c]~[a,b,c]+5„,

a [r];: [a,b,c]~[a,b, c]—5„r= 1,2

S p
——4[a', m ][op,a;], a,P=+ .

V. MATRIX REPRESENTATION OF PARA-FERMI
OPERATORS IN A U(n) BASIS

0 if a and b are both even

q= 1 ifb isodd
2 if a is odd and b is even .

(42)

It is our aim here to derive the matrix elements of the
para-Fermi operators az in the GP basis (41). This is
equivalent to finding the matrix elements of the O(2n + 1)
generators, in a U(n) basis, for the antisymmetric tensor
representation (1,1, . . . , 1).

%'e note that the para-Fermi creation operators a'=a ~;

(i =1, . . . , n) constitute a vector operator of U(n), whilst
the annihilation operators a; (i =1, . . . , n) constitute a
contragredient vector operator. Following the methods of
Ref. 8 we may thus resolve the operators a' and a; into
their U(n) shift components according to

Keeping in mind possible shell-model, perturbation-
theory, or electron-propagator applications, particularly
for open-shell problems involving particle-number-
nonconserving operators, ' we conclude in this sec-
tion by obtaining a matrix representation for parafermion
operators of order 2 in a U(n) canonical basis.

We assume throughout that we are working in the Fock
space a z, corresponding to parafermions of order 2. As
we have seen, P 2 decomposes into irreducible representa-
tions of U(n) according to

P (a,b,c),
Oga, b, cgn
a+b+c=n

where, in the notation of Ref. 8, W(a, b, c) denotes the car-
rier space for the irreducible representation of U(n) with
Paldus labels ' ' " [a,b,c], i.e., the irreducible representa-
tion of U(n) with highest weight

(2,2, . . . , 2, 1,1, . . . , 1, 0,0, . . . , 0)
a b C

We choose as a basis for the s ace P i the electronic Gel-
fand states' [also referred to '3' as Gelfand-Paldus (GP)
basis states)

(41)

where [P] denotes a U(n) Paldus tableaui s i'34 (originally
as an ++C tableau} and g is the correspond-

ing O(2n }-invariant label of Eq. (10). It is uniquely deter-
mined by the U(n) Paldus labels [a,b,c] according to

and r denotes the opposite index to r, i.e.,

2 if r=l .

Further, we have adopted the notation of Ref. 8 where

e„F„d en'toethe U(n) characteristic roots

6i =If —C, F2
——a —1. (45)

The nonvanishing matrix elements of the operators
a [r]',a [r]; in the GP basis, Eq. (41), are given by

(
Pn+5r . Pn Ps+ 5r Pn

a[r7' [p]
——&P„+5„1la I IP„& [p,]

e [p]

(46a)

p„—5„ Pn Pn —5r Pn

[p ] a[r] [p] =&P.—5. lla lip. & [p ) '[p)

(46b)

where P„=[a,b, c] denotes the U(n) Paldus labels and

[P],[P'] are allowable Paldus tableaux for the subgroup
U(n —1}. The first factor on the right-hand side of Eqs.
(46a) and (46b) above is the O(2n +1):U(n) reduced ma-
trix element (RME) and the second factor is an ordinary
U(n) vector (or contragredient vector} coupling coeffi-
cient. These latter coefficients are already known so it
remains to evaluate the corresponding RME's.

Following Ref. 8 we have the relations

a [r]'a[r)I R„P[r]', , ——
a [r];a[r]J=R,P[r]J;,

(47)

where R„R, are U(n)-invariant operators whose eigen-
values determine the squares of the RME's, since

R.= I &P. +5.lla lip. & I'

where 5, (r =1,2) denote the shifts

5i ——[0,1,—1], 5q ——[1,—1,0] .

The shift components, Eqs. (43), are given explicitly by
(the summation convention is implied)

a [r]'=aJG[r]'J,

a [r]; =a)G[r]J;,

where

a'=a [17'+a[2]',
a; =a[1];+a[2];,

which alter the U(n) Paldus labels [a,b, c] according to

(43) The projection operators P[r],P[r] of Eqs. (47) are given
explicitly by Eq. (10} of Ref. 8 according to which we
may write
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c(2+b) — (n +1 a—)b
trP 1 =

(n+2 —c)(1+b) ' (1+a)(1+b)trP2 = However, Eq. (42) indicates that b, can only take values 0
and 1 so that, in particular, b is idempotent, i.e., b, =b, .
It is easily checked, using Eq. (42), that the operator 5
may be alternatively expressed as

Taking the trace of Eq. (47) we have the relations

I „=R„trP[r], I „=R,trP [r],
where I „I„denote the U(n) invariants

I,=a;a JG[r]', , I „=a'a,G [r]J; .

(50)

(51)

(58)

Substituting now Eqs. (57) and (58) into Eq. (56) we ob-
tain, keeping in mind the idempotency of 6, the following
expression for the operators ~„:

~l c(——b+2 —b, ), ~2 —(n+——1 a)(b—+6) .

Thus to evaluate the RME's using Eq. (48) it suffices to
evaluate the spectra of the operators I „,I „, Eq. (51). We
find it convenient to write

where

kr =er —ei ~

r, =a;ai( E' e—b' )—

We also have [see Eq. (45)]

gl el e2 g2 I +b

so that substituting into Eq. (52}we obtain

c(b+2 —6)
&

(n+1 a)(b+—b)
1+b ' 1+b

Substituting, finally, these expressions together with those
of Eq. (49) into Eq. (50), we obtain the following formulas
for the squared RME's R„:

Now

a;a~E'J —c~;a'—= (n —e'~)4l —42,
where

(S3)
(n +2 c)(b +2——4) (a +1)(b +5)R}——

b+2 '
b

R2 ——

(59)

e,=a,E',aj .

It thus suffices to evaluate the operators 4l and 42.
To this end we find immediately that

r

4l ——a;a'= —,
' [a;,a']+ —,

'
Ia;,a'}

D ]
D [p —5, ]

&p I la I lp
—&. &

%e could similarly evaluate the squared RME's R, .
However, in this case it suffices to use the relations

' }/2

= —(E';—5';)+ —,
'

Iap, ai'}

(54)

where'2's
r

n+1 n+1
p=[a, b, c]

where we have applied Eqs. (14) and (39), noting that

p =2 for the case at hand„ and Il —E'; is the fir—st-order
Gelfand invariant of U(n), corresponding to the total elec-
tron number operator. Similarly, for the operator 42 a
straightforward calculation, using Eq. (40), gives

is the dimension of the irreducible representation [a,b,c]
of U(n). In this way we obtain the formulas

(c +1)(b +6, ) — (n +2 a)(b +2 —b,)—R}=
b

R2 ——
b+2 t

4 2 ——b,4i+2n +(2—n)Il I2, — (55) (60}

where I2 E'1EJ; is the——second-order Gelfand invariant of
U(n). Substituting Eqs. (54) and (55) into Eq. (53) we
thus obtain

r, =(n F~ 6)(2n—I—i+6)—2n —(—2 —n)Il+I2 .

We now note that the eigenvalues of the U(n) invariant
Il and I2 are given, in teems of the U(n) Paldus labels
[a,b,c], by [we use the same symbol for these eigenvalues
since Il and I2 are U(n) invariant]

I}——2a+b,
I2 ——(2a +b)(n +1—a)+2a —(a +b)b .

Also, in accordance with Eq. (12), the operator 5 may be
written as

h=q(2 —q) .

where we have used the fact that for the final state
~ p —b„}we have

5'= —,
' [1+( —1) ]= 1 —6 .

%e draw attention to the remarkable similarity between
the squared RME's, Eqs. (59) and (60), and those obtained
previously for the U(n + 1) generators in Ref. 8.

%'e are now ready to obtain explicit matrix representa-
tion for the O(2n +1) generators. We first note that the
O(2n+1) Lie algebra is generated, as a Lie algebra, by
the operators a" and a„ together with the elementary
U(n) generators E';+l and E'+'; (i =1, . . . , n —1).
Since the matrix elements of the latter operators are well
known, ' ' we only need to evaluate the matrix elements
for the parafermion operators a" and a„. The matrix ele-
ments of the remaining O(2n + 1) generators may then be
obtained by the repeated use of commutation relations.

Since the operators a" and a„do not alter the Paldus
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labels of the U(n —1) subgroup, their nonzero matrix ele-

ments are [using notation of Eq. (46)]

(61)

APPENDIX: O(2~+ ~, ~) COMMUTATION
RELATIONS

We demonstrate here that the operators (26) constitute
the generators of an O(2n +1, 1) group. Throughout this
appendix we adopt the notation of Sec. III of the paper.

We start by defining the generators aRs
(R,5=1, . . . , 2n+2),

In view of Eq. (47) we find that 1

ap = —,[a pa ], (Ala)

p ~r r p

p p„ 1 /2

[I'] ' " lp]

(62)

5a =1—5a =a —a',
Sc=1—5c=c —c'.

Substituting now Eqs. (59), (60), and (63) into Eq. (62) we
obtain the desired elementary inatrix elements

1/2

W =rV = b+2-~, W=rV =b'+ 1

' 1/2b+5
b'+ 1

We note that in the above formulas we have omitted the
"selection factors" 5a, 5c,5a,5c which can only take
values 0 or 1 (cf., Ref. 8) and hence do not contribute to
the structure of the matrix elements. It is therefore impli-
citly assumed that the matrix elements (61) vanish unless
the Paldus labels of the fmal state are lexical. ' '

This essentially completes our discussion of the matrix
elements of the second-order para-Fermi algebra. We
note that it has been implicitly assumed that the phases of
the matrix elements of the generators a" and a„are
(+ 1), which is equivalent to the requirement that the
RME's of Eqs. (46) and (48) have positive real phase. It is
easily checked that this phase convention leads to the
correct O(2n + 1) commutation relations as required.

where the operators C„,C, are the U(n —1) invariants
given by

C„=P[r)"„, C„=P[r)"„.
These operators may be expressed in terms of the U(n)
and U(n —1) Paldus labels p„=[a,b, c] and

p„ 1 [a',b', c——'], respectively, as follows:

(5c)b C (5a)(b +2)
(c+1)(b'+1) ' (n+2 —a)(b'+1) '

(5c)(b +2) C (5a )b

(n+2 —c)(b'+1) ' ' (a+1)(b'+1) '

a
rpr, n2+1= rr2n+1, p=a p/'" 2 ~

ap 2„+2———a2„+2 p i [m~,—a—p]/2v 2,
&2n+1,2n+2 ——rr2n+2, 2n+ i —iira/2 i

(A lb)

(Alc)

p, a = 1, . . . , 2n (A 1d)

aq~ ———o.zz, A,S = 1, . . . , 2n +2 .

Note that thee generators are identical with operators
(26) except that ir~/2 is replaced by in/2 .It is. our aim
to show that the generators (Al) satisfy O(2n +2) com-
mutation relations,

[ pQ Rs ] gpscrQR +gQR crps gpR +Qs gQs+ pR

where gRs ——gsR denotes the (symmetric) O(2n +2) metric
defined by

1 if ~p
—a~=n

0 otherwise, p, o.=1, . . . , 2n

g 2n + 1,2n +1 g2rg +2, 2g +2

g2n+1, 2n+2 gp, 2n+1 gp, 2n+2

In view of the well-known unitary trick of Weyl, the com-
mutation relations, Eq. (A2), demonstrate that the opera-
tors (26) form the generators of the group O(2n + 1, 1) as
required.

We know from the work of Bracken and Green that
the operators (Ala) and (Alb) satisfy the commutation re-
lations of the group O(2n+1) (cf. also Sec. I). It thus
remains to demonstrate the commutation relations

[rrpu&rip„2n+2] gpcrrrp2n+2 gp, prra, 2n ~2 ~

[+2@+1,2n+2~+p, 2n+2) rip, 2n+1 ~

[&p,2n +2~rrn, 2n +2] =Crpn

[Crp2n+ l~rrrr, 2,n +2]=gpoCr2n+2, 2n+1 ~

(A3a)

(A3b)

(A3c)

(A3d)

the remaining ones being trivial.
We begin by recalling that I n, a p j =0, .

(p= 1, . . . , 2n), [ef. Eq. (25)], which yields, in particular,
that
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and

[ir,a p]=2m.~ p

[m, [a~p, a~ ]]=0.
Using Eq. (A5) we thus get

(A4)

(A5)
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C= —Q p (A6)

as required, rvhcre in the Iast step me have used the result

[cf. Eq. (25)]

m~ =1. (A7)

As to Eq. (A3c), we prove the equivalent relation

4 [[trz a p] [trin a &]] [a s ap]

Applying Eqs. (A4), (A6), and (A7) we find

—,'[[a,a ],[in, a p]]= ,—[in',[[a p, a ],a p]]

=g„ot[tra, a p] —g„pt[&a a ~)

which is equivalent to the commutation relation (A3a).
We next prove the relation Eq. (A3b), which is

equivalent to

[in /2, [in /2, a p]]= —a p .

Using Eq. (A4), we find

[in /2, [in /2, a p]]=—,'[n—„[tr,a p])

,
' [—n—,tr~. p]

(tra—/2)[tra, a p]

,'—[[n.,a p], [n.,a ])=ftr~ p, sr~ ]

= —[a,a ]—n [n,a p]a

+[n,sr~ ]a p

= —[a,a p] —2a p +2a ~
= [a ,a p],

as required.
It thus remains to establish Eq. (A 3d) which is

equivalent to the commutation relation

—,
' [a,[n,a ])= —g n

To this end we note that the left-hand side of Eq. (A8)
may be written, in view of the anticommutation relations,
Eqs. (23),

p [~a a ~])= [a p ~a .]
= —n. Ia p, a

go&a ~

as required. This proves the desired O(2n +2) commuta-
tion relations, Eq. (A2).
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