293 research outputs found

    Impeller leakage flow modeling for mechanical vibration control

    Get PDF
    HPOTP and HPFTP vibration test results have exhibited transient and steady characteristics which may be due to impeller leakage path (ILP) related forces. For example, an axial shift in the rotor could suddenly change the ILP clearances and lengths yielding dynamic coefficient and subsequent vibration changes. ILP models are more complicated than conventional-single component-annular seal models due to their radial flow component (coriolis and centrifugal acceleration), complex geometry (axial/radial clearance coupling), internal boundary (transition) flow conditions between mechanical components along the ILP and longer length, requiring moment as well as force coefficients. Flow coupling between mechanical components results from mass and energy conservation applied at their interfaces. Typical components along the ILP include an inlet seal, curved shroud, and an exit seal, which may be a stepped labyrinth type. Von Pragenau (MSFC) has modeled labyrinth seals as a series of plain annular seals for leakage and dynamic coefficient prediction. These multi-tooth components increase the total number of 'flow coupled' components in the ILP. Childs developed an analysis for an ILP consisting of a single, constant clearance shroud with an exit seal represented by a lumped flow-loss coefficient. This same geometry was later extended to include compressible flow. The objective of the current work is to: supply ILP leakage-force impedance-dynamic coefficient modeling software to MSFC engineers, base on incompressible/compressible bulk flow theory; design the software to model a generic geometry ILP described by a series of components lying along an arbitrarily directed path; validate the software by comparison to available test data, CFD and bulk models; and develop a hybrid CFD-bulk flow model of an ILP to improve modeling accuracy within practical run time constraints

    Simulation of cryogenic turbopump annular seals

    Get PDF
    The goal of the current work is to develop software that can accurately predict the dynamic coefficients, forces, leakage and horsepower loss for annular seals which have a potential for affecting the rotordynamic behavior of the pumps. The fruit of last year's research was the computer code SEALPAL which included capabilities for linear tapered geometry, Moody friction factor and inlet pre-swirl. This code produced results which in most cases compared very well with check cases presented in the literature. TAMUSEAL Icode, which was written to improve SEALPAL by correcting a bug and by adding more accurate integration algorithms and additional capabilities, was then used to predict dynamic coefficients and leakage for the NASA/Pratt and Whitney Alternate Turbopump Development (ATD) LOX Pump's seal

    Piezoelectric pushers for active vibration control of rotating machinery

    Get PDF
    The active control of rotordynamic vibrations and stability by magnetic bearings and electromagnetic shakers have been discussed extensively in the literature. These devices, though effective, are usually large in volume and add significant weight to the stator. The use of piezoelectric pushers may provide similar degrees of effectiveness in light, compact packages. Tests are currently being conducted with piezoelectric pusher-based active vibration control. Results from tests performed on NASA test rigs as preliminary verification of the related theory are presented

    Linearized force representations for turbopump liquid annular seals

    Get PDF
    The analysis and the accompanying FORTRAN code, SEALPAL1, to simulate liquid annular seals with axial taper, Moody friction factors, and pre-swirl, are discussed. The output of the code includes all dynamic coefficients (stiffness, dampings, and inertias), leakage rate, torque, and horsepower loss. The computer code results were compared with five cases from the literature. The agreement was very good in almost all instances, except several predicted cross coupled stiffnesses were significantly lower than those appearing in the literature. This disagreement could reflect a theoretical or a programming error by the researcher or in the literature, or it could be a result of the difference in friction factor models or other assumptions employed

    Simulation of cryogenic turbopump annular seals

    Get PDF
    San Andres employed the NBS software package MIPROPS to account for density's dependence on pressure in the simulation of liquid annular seals. His example on a LH2 seal showed a significant change in the mass coefficient compared to a constant density model. San Andres, Yang, and Childs extended this analysis by including the pressure and temperature dependence of density, specific heat, viscosity, volumetric expansion, and thermal conductivity in a coupled solution of the energy, momentum, and continuity equations. Their example showed very significant changes in stiffness and inertia for a high speed (38,000 rpm), large L/D ratio (0.5) LOX seal, as compared to their constant temperature results. The current research rederived the San Andres-Yang-Childs (SYC) analysis and extended it to include not only the Moody friction model of SYC but also the Hir's friction model. The derivation begins with obtaining the local differential equations of continuity, momentum, and energy conservation in the seal. These equations are averaged across the film thickness to obtain the resulting 'bulk flow' differential equations. Shear stress and convective heat loss through the stator (seal) and rotor are related to the Moody and Hir's friction factor model. The Holman analogy is employed to relate heat conduction in or out of the fluid film's boundary layer to the friction induced shear stress

    Electromechanical Simulation of Actively Controlled Rotordynamic Systems with Piezoelectric Actuators

    Get PDF
    Theories and tests for incorporating piezoelectric pushers as actuator devices for active vibration control are discussed. It started from a simple model with the assumption of ideal pusher characteristics and progressed to electromechanical models with nonideal pushers. Effects on system stability due to the nonideal characteristics of piezoelectric pushers and other elements in the control loop were investigated

    Influence of Temperature and Impact Velocity on the Coefficient of Restitution

    Get PDF
    Tests were performed on a variety of material combinations to understand the effects of temperature and impact velocity on the coefficient of restitution (COR). The tests, performed in a vacuum at room and liquid nitrogen temperatures, consisted of dropping a ball onto a target plate and recording the impact time history of the ball's bounce-down. Time intervals between successive impacts were measured from the time history and used to calculate the coefficient of restitution and impact velocity for each impact. Maximum impact velocities ranged from approximately 33 (0.84) to 52 in./s (1.32 m/s). Five ball-target plate combinations were evaluated: type 316 stainless steel (316 SS) on 316 SS; M50 tool steel on Armalon; M50 on 4340 steel; 410C steel on Armalon; and copper on copper. The coefficient of restitution for the 316 SS-316 SS, M50-Armalon, 410C-Armalon, and copper-copper combinations increased as the temperature and impact velocity decreased. The coefficient for the hard steel combination, M50-4340, was not greatly influenced by temperature or variations in impact velocity

    Perfluorooctanoic Acid–Induced Immunomodulation in Adult C57BL/6J or C57BL/6N Female Mice

    Get PDF
    BackgroundPerfluorooctanoic acid (PFOA), an environmentally persistent compound of regulatory concern, has been reported to reduce antibody responses in mice at a single dose.ObjectiveThe aim of this study was to evaluate PFOA effects on humoral and cellular immunity using standard assays for assessing immune function, and to derive dose–response data.MethodsC57BL/6J mice received 0 or 30 mg PFOA/kg/day for 10 days; half of the exposed groups were switched to vehicle and half continued on PFOA for five days. C57BL/6N mice received 0–30 mg/kg/day of PFOA in drinking water for 15 days. Mice were immunized with sheep red blood cells or sensitized to bovine serum albumin in Freund’s complete adjuvant on day 10 of exposure; immune responses were determined 1 day post-exposure.ResultsWe found that 30 mg PFOA/kg/day given for 10 or 15 days reduced IgM synthesis; serum collected 1 day postexposure contained 8.4 × 104 or 2.7 × 105 ng PFOA/mL, respectively. IgM synthesis was suppressed at exposures ≥ 3.75 mg PFOA/kg/day in a dose-dependent manner, and IgG titers were elevated at 3.75 and 7.5 mg PFOA/kg/day. Serum PFOA at 3.75 mg/kg/day was 7.4 × 104 ng/mL 1 day postexposure, or 150-fold greater than the levels reported in individuals living near a PFOA production site. Using a second-degree polynomial model, we calculated a benchmark dose of 3 mg/kg/day, with a lower bound (95% confidence limit) of 1.75 mg/kg/day. Cell-mediated function was not affected.ConclusionsIgM antibodies were suppressed after PFOA exposure. The margin of exposure for reduced IgM antibody synthesis was approximately 150 for highly exposed human populations

    Electric Shaft Currents In Turbomachinery.

    Get PDF
    LecturePg. 51-64Electrical damage to turbomachinery parts has caused a number of machinery failures and many hours of costly downtime. The problem of electrical voltages and currents being generated in non-electrical machines has puzzled both users and manufacturers of these equipment, and has prompted ongoing research at Texas A&M to help identify and better classify the different sources of these voltages and the mechanisms by which they cause damage to bearings, seals, and other critical machinery parts. Electrostatic and electromagnetic type voltages are often misidentified, a situation that might lead to a wrong or costly remedy. The distinctions between these two major sources of shaft voltages and currents are clearly drawn herein. Lubricating oil characteristics and their influence on the buildup of shaft voltage potential have also been carefully scrutinized. Breakdown voltages were generated and measured at different operating conditions to help highlight the influence of the different variables such as bearing clearance and dielectric strength of the oil

    The anticancer activity of an air-stable Pd(i)-NHC (NHC = N-heterocyclic carbene) dimer

    Get PDF
    A new dinuclear Pd(i) complex coordinating two bis(NHC) ligands revealed an unsuspected stability despite the unsaturation of the two metal centres. Even more surprisingly, the compound showed high and selective antiproliferative activity against different cancer cell lines and ovarian cancer tumoroids, and the mechanism of action was different from that of cisplatin
    corecore