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This research developed theories and conducted tests for incorporating piezoelectric pushers 
as actuator devices for active vibration control. It started from a simple model with the 
assumption of ideal pusher characteristics and progressed to electro-mechanical models with 
non-ideal pushers. Effects on system stability due to the non-ideal characteristics of piezoelectric 
pushers and other elements in the control loop were investigated. 

NOMENCLATURE 

ADFT Active damping feedback theory 
ADSFT Active damping and stiffness feedback theory 
ASFT Active stiffness feedback theory 
AVC : Active vibration control 
[Cl : Damping matrix 
C: : Feedback positive active damping 

[CD] : Proportional damping matrix 
CD, : Capacitors used in differentiator 

Ci : Capacitors used in 2nd order non-inverting LPF 
CS : Damping coef. of the piezoelectric stack 
e 1 : Eccentricity 
{FD(t)) : External forces (disturbance) 
Fi , : Imbalance forces in x due to mass imbalance 
Fi : Imbalance forces in y due to mass imbalance 

FP, : Force produced by the i th pusher 

Fj(s) : J~~ input of the transfer function 

Gij(S) : Transfer function between the ith output 

: the j th  input 
K : Feedback gain in amplifier 

[KI : Stiffness matrix 
mD1 : Stiffness matrix including the pusher stiffness 

wDD1 : Pusher stiffness matrix 
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i s  a l s o  extended t o  t h e  f o l l o w i n g  people  f o r  t h e i r  t e c h n i c a l  ass i s t ance :  John 
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: Feedback stiffness matrix 
: Preload spring inside the pusher 
: Stiffness of pusher A 
: Stiffness of pusher B 
: Absorber stiffness at  pusher A 
: Absorber stiffness at  pusher B 
: Stiffness of the stack of piezoelectric discs 
: Low pass filter 
: Number of actuators 
: Mass matrix 
: Lumped mass matrix of piezoelectric pushers 
: Number of degrees of freedom 
: Resistors used in differentiator 
: Resistors used in 2nd order non-inverting LPF 
: Feedback resistor used in amplifier 
: resistor used in amplifier 
: Transfer function 
: Probe voltage 
: Pusher tip displacement 

{ a )  : Prescribed displacement of the pushers 
di : scalar factors used in transfer function match 

< i  : ith modal damping 
[ail : ith natural frequency 

INTRODUCTION 

There are two major strategies in rotordynamic vibration control: passive control and 
active control. Passive control is achieved by changing system parameters via passive damping 
components or devices. Some of these devices are Lanchester dampers, impact dampers, and 
squeeze-film dampers. Active control uses a servo-controller-actuator system to produce control 
forces which act directly upon the rotor in response to measured vibrations. Active vibration 
control has become an area of intense research in rotorbearing system dynamics. Research has 
been focused on developing effective active vibration control algorithms for machine tools, large 
space structures, and in robots. Significant efforts are being made to apply active vibration 
control (AVC) devices to rotating machinery in the petrochemical, aerospace and power utility 
industries. The advantages of active control over passive, i.e., absorbers and dampers, is 
the versatility of active control in adjusting to a myriad of load conditions and machinery 
configurations. This is clearly illustrated when one considers the very narrow bandwidth that 
a tuned spring mass absorber is effective in. Other advantages of AVC include compact size, 
light weight, and no lubrication systems needed in the control components, and the satisfactory 
operation in high or low temperature. 

LITERATURE REVIEW 

Electromagnetic shakers and magnetic bearings have been used for actuators in the majority 
of the active vibration control research mentioned in the literature. Magnetic bearings act 
directly onto the rotor without contact while electromagnetic actuators apply forces onto the 
rotor indirectly through the bearings. Schweitzer (1985) examined the stability and observability 



of rotorbearing systems with active vibration control, and presented an analysis which related 
force and stiffness to electrical and geometrical properties of electromagnetic bearings. 

Nikolajsen (1979) examined the application of magnetic dampers to a 3.2 meter simulated 
marine propulsion system. Gondhalekar and Holmes (1984) suggested that electromagnetic 
bearings be employed to shift critical speeds by altering the suspension stiffness. Weise (1985) 
discussed proportional, integral, derivative (PID) control of rotor vibrations and illustrated how 
magnetic bearings could be used to balance a rotor by forcing it to spin about its inertial axis. 
Humphris et a1 (1986) compared predicted and measured stiffness and damping coefficients for 
a magnetic journal bearing. 

Several papers describe active vibration control utilizing other types of actuators such as 
pneumatic, hydraulic, electrohydraulic, and eddy current force generators. Ulbrich and Althaus 
(1989) discussed the advantages and disadvantages of different types of actutors, and examined 
controlled hydraulical chambers as force actuators. This compact system could develop very large 
forces and thereby influence even large turbines weighing several tons, however, the difficulty of 
hydraulic control lies in high frequency (over 100 Hz) response. This was essentially limited by 
the servo valve implemented and fluid losses. Feng (1986) developed an active vibration control 
scheme with actuator forces resulting from varying bearing oil pressure. Heinzmann (1980) 

' 
employed loud speaker coils linked to the shaft via ball bearings to control vibrations. 

Crawley and de L ~ 1 s  (1983, 1985) used piezoceramics, bonded on the surface of cantilever 
beams, as actuators either to excite vibrations or to suppress the vibrations by introducing 
damping to the system. Furthermore, they developed a theoretical background for predicting the 
amplitude of the vibration induced by piezoceramics. Stjernstrom (1987) bonded piezoceramics 
on cantilever beams as actuators and sensors to induce the lSt and 2nd vibration modes. 

Matsubara et a1 (1989) employed piezoelectric dampers to suppresschatter vibrationduring 
a boring process. These piezoelectric dampers were driven so as to generate damping forces 
corresponding to the vibration velocity of the boring bar. Tzou (1987) demonstrated the control 
of bending vibration in non-rotating beams by using layered piezoelectric materials. 

This paper considers the effects on the system stability due to the non-ideal characteristics 
of piezoelectric pushers and other control devices used in the control loop. The piezoelectric 
actuators are represented by equivalent, linear electric circuit with elements selected so as to 
match the frequency response function of the circuit to  that of the actuator. The differential 
equations for the circuits are assembled into the structural matrices to form an electro-mechanical 
model of the system. This model may than be employed to predict instability onset feedback 
gains, total system stability and total system forced response. 

ANALYSIS - GENERAL 

The matrix differential equations of motion for a rotor bearing system can be derived by 
using Newton's 2nd law or by Lagrange's method. Eq.(l) shows the matrix differential equation; 

where [MI, [C], and [K] matrices are the rotor bearing system mass, damping, and stiffness, 
respectively, N is the number of degrees of freedom, and {F} represents the external forces 
exerted on the system. 



Figure 1 (Palazzolo, 1981) shows a general rotor model with translatory and rotational 
dofs in the XZ and YZ planes. The model is discretized into lumped inertia stations which are 
connected by massless beam segments. The equilibrium equation of a disk is derived through the 
consideration of external forces present due to adjacent beam segments and the bearing stiffness 
forces. 

The free vibration equilibrium equations for the entire rotor system are assembled by 
requiring internal equilibrium and displacement compatibility. Palazzolo (1981) shows how the 
[MI, [K], and [C] matrices are formed for a generic rotorbearing system from basic geometric and 
material properties. 

ANALYSIS - EQUIVALENT CIRCUITS 

In previous references (Palazzolo, 1989) the free tip response of a piezoelectric pusher is 
assumed to be approximately equal to the internal prescribed displacement which is assumed 
to vary linearly with input voltage. These assumptions are valid only at frequencies well below 
the resonant frequency of the pusher. The phase lag of the piezoelectric pusher increases with 
frequency and may cause negative active damping to occur if the phase lag is greater than 90'. 
Phase lag is also introduced by the pusher drivers and other electronic components in the control 
loop. 

A linear time-invariant system with input f ( t )  and with output r ( t )  can be characterized by 
its impulse response g(t), which is the response when subjected to an unit impulse input S(t). 
Once the impulse response of the linear system is known, the output of the system r ( t ) ,  with any 
input f ( t ) ,  may be found from the transfer function of the system. 

The transfer function of a linear time-invariant system is defined as the Laplace transform 
of the impulse response with zero initial conditions (Kuo, 1987). In general, if a linear system 
has p inputs and q outputs, the transfer function between the ith output and the j t h  input is 
defined as 

where F k ( S )  = 0, k = 1, 2, ... , p, k # j .  

Equivalent electrical circuits are constructed to reproduce the measured transfer (frequency 
response) functions of the piezoelectric actuators and their amplifier drivers. These linear circuits 
may then be assembled with the structural system equations. 

An electro-mechanical representation of an AVC system, consisting of a soft-mounted pusher, 
isolation pad, probe, and control devices, is shown in Figure 2. In this figure the buckout circuit 
removes DC bias from the eddy current displacement sensor, the low pass filter (L.P.F.) is utilized 
to reduce high frequency noise and improve stability. The figure also shows how the piezoelectric 
actuator and its amplifier driver are both represented by equivalent 2nd order non-inverting low 
pass filters. With this model, the non-ideal characteristics of the overall system due to phase lag 
and frequency dependency can be included. 

The differential equation for the differentiator in Figure 2 is 



The correspanding transfer function is then 

If the variable 'S' in Eq.(4) is replaced by the variable 'jzo', then Eq.(4) represents the frequency 
response function of the differentiator in the frequency domain. 

The differential equation for the 2nd order non-inverting low pass filter is 

The corresponding transfer function is then 

K 
v2(s) - (RIRzCICZ) T.F. = - 
Vl(S) - I 1 s2 + [ ( + ) + - + RlR,ClC, 

Again, if the variable 'S7 is replaced by the variable 'jw' in the above equation, Eq.(6) represents 
the frequency response function in the frequency domain and is shown below. 

T.F. = 
V2 ( j 211) - 

- 
A- 

( )  (1 - R1R2C'1C2d2) + jw[C2(Rl + R2) + (1 - k)RlCl] 
(7) 

The electrically undamped natural frequency, on, of this circuit is defined by 

and the phase lag angle is 

4 = tan  -1 w[C2(R1 + R2) + (1 - k)RICl] 
/ \ 

The following steps summarize a simple procedure to identify the resistances and capaci- 
tances of an equivalent 2nd order non-inverting low pass filter. 

a)  Make a frequency response plot of the physical system. 

b) Locate the cut-off frequency, w,, from this plot. 

c) Assume R1 = R2 and C1 = C2. 



d )  Select C1 arbitrarily and then calculate R1 by 

e) Use K = 3 for an undamped electrical system and K < 3 for damped electrical system. 

f )  Construct the electrical circuit using the calculated R and C values. 

g) Adjust the damping factor in the equivalent electrical circuit by varying the K value to 
match the peak magnitude at  the cut-off frequency location. 

h)  Multiply this realized frequency response function by a proper scale factor which represents 
the magnitude ratio between the known and the realized frequency response functions at 
w = 0. 

Figure 3 shows the schematic diagram for measuring the frequency response function of a 
pusher. The pusher is screwed inside a vertical steel cylinder and excited by a signal generator 
through the pusher driver. The displacement of the free tip of pusher, output for the transfer 
function, is measured by an eddy current probe. The exciting signal is the input for the transfer 
function. Both input and output are connected to a spectrum analyzer and the results of the 
transfer function are sent to  a printer. 

Figure 4 shows the transfer function of a typical pusher while Figure 5 shows the corre- 
sponding transfer function of the equivalent 2nd order non-inverting low pass filter circuit with 
identified R and C values. This simulation shows a very good correlation between the two trans- 
fer functions when the frequency is below 4000 Hz. Note that a jet aircraft engine, depending 
on the size, normally operates at speeds from 5000 rpm (83.3 Hz) up to 25000 rpm (416.6 Hz). 
Furthermore, electro-mechanical instability frequencies have always occurred less than 4000 Hz, 
in our testing. 

ANALYSIS - ELECTRO-MECHANICAL SYSTEM MODELING 
UTILIZING OPPOSING SOFT-MOUNTED ACTUATORS 

The stability of the active vibration control system is affected by both the characteristics of 
the mechanical system (e.g. rotor) and those of the electrical devices (e.g. actuators) used in the 
control feedback loop. The characteristics, i.e. phase lag, of the electrical devices are incorporated 
in the mechanical system model by including their transfer function behavior represented by 
equivalent electrical circuits. Theory for the electro-mechanical model and comparisons between 
predicted and measured unbalance response and stability are presented. 

Electro-Mechanical Model Theory 

Let two opposing, soft-mounted pushers be installed at  the jth bearing of the rotor system 
(see Figure 6) where mb, cj, and kj are the mass, damping, and stiffness of the j th  bearing, and 
kpA and k p B  are the stiffnesses of pushers A and B and the dashed blocks represent the following 
components: 

Block A: Inverting differentiator 
Block B: 4th order non-inverting low pass filter to simulate the Ithaco filter 
Block C: 2nd order non-inverting low pass filter to simulate pusher driver B 
Block D: 2nd order non-inverting low pass filter to simulate pusher B 
Block E: 2nd order non-inverting low pass filter to simulate pusher driver A 



Block F: znd order non-inverting low pass filter to simulate pusher A 

Combining the mechanical and electrical differential equations for the model in Figure 6 
yields 

where 
k l l  = k j  +  PA + ~ P B  k12 =  PA 
kl8 = kPBP7 k i l o  = - ~ P A P B  
k21 =  PA k 2 2  = ~ R A  +  PA 
k31 = - ~ P B  k33 = ~ R B  + ~ P B  

1 
k44 = C o l R D z  

k54 = - w ? h - i P 2  k55 = w1 2 

k65 = -w;K2 k66 = W2 2 



and where Ki is the internal zero frequency gain of the individual filter and is defined as 

and 

Finally p5 and j 7  are the scale factors used to match the amplitudes of the transfer functions 
of the pusher driver B and pusher B, respectively. 

The "electromechanical" element matrices in Eq.(lO) are next assembled into the structural 
finite element model of the rotor bearing system described by Eq.(l). The total system model 
can then be employed for free or forced vibration response simulation. 

TEST RESULT CORRELATION 

Figure 7 shows a diagram of the actively controlled rotor bearing system at NASA Lewis. 
Each bearing has a control circuit as shown in this figure. Unbalance response was obtained by 
measuring the influence coefficients for an imbalance attached on the outboard disk. Figure 
8 shows the measured influence coefficient at  the outboard bearing for the controlled and 
uncontrolled cases. Figure 9 shows that the predicted influence coefficient as obtained from the 
electromechanical simulation model is in good agreement with the test results. The simulation 
model employed a proportional damping assumption for the uncontrolled (tare) system. 

The Yo velocity feedback gain was increased in Figure 7 until the system became unstable 
at zero rpm. The unstable mode shape was measured and appears in Figure 10. Figure 11 shows 
that the corresponding unstable mode predicted by the electromechanical simulation model is 
very similar in form and frequency. The instability onset-feedback gain was very sensitive to the 
amount of passive (uncontrolled) damping of the unstable mode. The measured passive damping 
ratios for this mode ranged between 0.0011 and 0.011. The measured instability onset feedback 
gain (P4) was 5. The predicted value was 7 with a unstable mode passive damping of 0.0011. 
The utility of the simulation program as a design or trouble shooting tool for actively controlled 



systems is demonstrated in Figure 12 which shows how stability can be controlled by changing 
resistance in the low pass filter. 

Figure 13 shows the effectiveness of the control system in controlling two modes utilizing 
both active damping and stiffness. 

SUMMARY 

The authors have developed a new means for simulating the electromechanical response 
of rotorbearing system utilizing a piezoelectric actuator type active vibration control. The 
simulation results show good agreement with those measured on a two bearing turbine-driven 
test rig at  NASA Lewis. 
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Figure 1 General n-disc rotor bearing rystem. 
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Figure 2 Soft-mounted single pusher with absorber. 
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Figure 4 Transfer knction plot of a typical pusher. 
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Figure 5 Transfer function plot of nalised electrical circuit of pusher A. 
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Figure 6 Electro-mechanical model with two opposing 
soft-mounted pushers. 



Figure 7 Schematic diaqram of sensors. actuators. 
and concroi circuit of NASA test rig. 
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Figure 8 Measured unbalance responses at with and 
without ADFT. 
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Figure 9 Simulated unbalance responses at Y O i R G  with and 
without ADFT, with 3-mode proportional damping method. 
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Figure 10 Measured mode shape of unstable mode at a 
fkequency of 2100 Hz. 

Figure 11 Predicted mode shape of unstable 
mode at 2400 Hz. 
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Figure 12 Effects of cutoff f equency of 4NILPF on the system 
instability onset p in .  



No AVC 

With AVC 

- 7 

Rotor Speed (rpm) 

Figure 13 Midspan vibration with and without active damping and stiffness. 




