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This research developed theories and conducted tests for incorporating piezoelectric pushers
as actuator devices for active vibration control. It started from a simple model with the
assumption of ideal pusher characteristics and progressed to electro-mechanical models with
non-ideal pushers. Effects on system stability due to the non-ideal characteristics of piezoelectric
pushers and other elements in the control loop were investigated.

NOMENCLATURE

ADFT Active damping feedback theory
ADSFT Active damping and stiffness feedback theory
ASFT Active stiffness feedback theory
AVC : Active vibration control
[C] : Damping matrix
cA : Feedback positive active damping
[Cp] : Proportional damping matrix
Cp, : Capacitors used in differentiator
C,; : Capacitors used in 27¢ order non-inverting LPF
Cs : Damping coef. of the piezoelectric stack
€1 : Eccentricity
{Fp(t)}  : External forces (disturbance)
F; : Imbalance forces in x due to mass imbalance
Fy : Imbalance forces in y due to mass imbalance
Fp, : Force produced by the i** pusher
F;(S) : J** input of the transfer function
Gi;(S) : Transfer function between the i*" output

: the 7** input
K : Feedback gain in amplifier
K] : Stiffness matrix
[KP) : Stiffness matrix including the pusher stiffness
[KPD) : Pusher stiffness matrix
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Ropchock, Gerald Brown, and Tom Lakatos.
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[KF] ~ : Feedback stiffness matrix

K, : Preload spring inside the pusher
Kpsg : Stiffness of pusher A
Kpp : Stiffness of pusher B
Kgpa : Absorber stiffness at pusher A
Krp : Absorber stiffness at pusher B
K, : Stiffness of the stack of piezoelectric discs
LPF : Low pass filter
M : Number of actuators
M] : Mass matrix
[Mp] : Lumped mass matrix of piezoelectric pushers
N : Number of degrees of freedom
Rp, : Resistors used in differentiator
R; : Resistors used in 2% order non-inverting LPF
RFp : Feedback resistor used in amplifier
Ry : resistor used in amplifier
T.F. : Transfer function
Vo : Probe voltage
z! : Pusher tip displacement
{a} : Prescribed displacement of the pushers
3; : scalar factors used in transfer function match
¢; : 1** modal damping
Q] : i** natural frequency
INTRODUCTION

There are two major strategies in rotordynamic vibration control: passive control and
active control. Passive control is achieved by changing system parameters via passive damping
components or devices. Some of these devices are Lanchester dampers, impact dampers, and
squeeze-film dampers. Active control uses a servo-controller-actuator system to produce control
forces which act directly upon the rotor in response to measured vibrations. Active vibration
control has become an area of intense research in rotorbearing system dynamics. Research has
been focused on developing effective active vibration control algorithms for machine tools, large
space structures, and in robots. Significant efforts are being made to apply active vibration
control (AVC) devices to rotating machinery in the petrochemical, aerospace and power utility
industries. The advantages of active control over passive, i.e., absorbers and dampers, is
the versatility of active control in adjusting to a myriad of load conditions and machinery
configurations. This is clearly illustrated when one considers the very narrow bandwidth that
a tuned spring mass absorber is effective in. Other advantages of AVC include compact size,
light weight, and no lubrication systems needed in the control components, and the satisfactory
operation in high or low temperature.

LITERATURE REVIEW

Electromagnetic shakers and magnetic bearings have been used for actuators in the majority
of the active vibration control research mentioned in the literature. Magnetic bearings act
directly onto the rotor without contact while electromagnetic actuators apply forces onto the
rotor indirectly through the bearings. Schweitzer (1985) examined the stability and observability
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of rotorbearing systems with active vibration control, and presented an analysis which related
force and stiffness to electrical and geometrical properties of electromagnetic bearings.

Nikolajsen (1979) examined the application of magnetic dampers to a 3.2 meter simulated
marine propulsion system. Gondhalekar and Holmes (1984) suggested that electromagnetic
bearings be employed to shift critical speeds by altering the suspension stiffness. Weise (1985)
discussed proportional, integral, derivative (PID) control of rotor vibrations and illustrated how
magnetic bearings could be used to balance a rotor by forcing it to spin about its inertial axis.
Humphris et al (1986) compared predicted and measured stiffness and damping coefficients for
a magnetic journal bearing. '

Several papers describe active vibration control utilizing other types of actuators such as
pneumatic, hydraulic, electrohydraulic, and eddy current force generators. Ulbrich and Althaus
(1989) discussed the advantages and disadvantages of different types of actutors, and examined
controlled hydraulical chambers as force actuators. This compact system could develop very large
forces and thereby influence even large turbines weighing several tons, however, the difficulty of
hydraulic control lies in high frequency (over 100 Hz) response. This was essentially limited by
the servo valve implemented and fluid losses. Feng (1986) developed an active vibration control
scheme with actuator forces resulting from varying bearing oil pressure. Heinzmann (1980)
employed loud speaker coils linked to the shaft via ball bearings to control vibrations.

Crawley and de L..s (1983, 1985) used piezoceramics, bonded on the surface of cantilever
beams, as actuators either to excite vibrations or to suppress the vibrations by introducing
damping to the system. Furthermore, they developed a theoretical background for predicting the
amplitude of the vibration induced by piezoceramics. Stjernstrom (1987) bonded piezoceramics

on cantilever beams as actuators and sensors to induce the 1°¢ and 2" vibration modes.

Matsubara et al (1989) employed piezoelectric dampers to suppresschatter vibration during
a boring process. These piezoelectric dampers were driven so as to generate damping forces
corresponding to the vibration velocity of the boring bar. Tzou (1987) demonstrated the control
of bending vibration in non-rotating beams by using layered piezoelectric materials.

This paper considers the effects on the system stability due to the non-ideal characteristics
of piezoelectric pushers and other control devices used in the control loop. The piezoelectric
actuators are represented by equivalent, linear electric circuit with elements selected so as to
match the frequency response function of the circuit to that of the actuator. The differential
equations for the circuits are assembled into the structural matrices to form an electro-mechanical
model of the system. This model may than be employed to predict instability onset feedback
gains, total system stability and total system forced response.

ANALYSIS - GENERAL

The matrix differential equations of motion for a rotor bearing system can be derived by
using Newton’s 2"? law or by Lagrange’s method. Eq.(1) shows the matrix differential equation;

(M) nxny{Z vy + [C}(NxN){Z}(le) + [K](nxny{Z}vx1y = {F (1) F v <y (1)

where [M], [C], and [K] matrices are the rotor bearing system mass, damping, and stiffness,
respectively, N is the number of degrees of freedom, and {F} represents the external forces
exerted on the system.
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Figure 1 (Palazzolo, 1981) shows a general rotor model with translatory and rotational
dofs in the XZ and YZ planes. The model is discretized into lumped inertia stations which are
connected by massless beam segments. The equilibrium equation of a disk is derived through the
consideration of external forces present due to adjacent beam segments and the bearing stiffness
forces.

The free vibration equilibrium equations for the entire rotor system are assembled by
requiring internal equilibrium and displacement compatibility. Palazzolo (1981) shows how the

[M], [K], and [C] matrices are formed for a generic rotorbearing system from basic geometric and
material properties.

ANALYSIS - EQUIVALENT CIRCUITS

In previous references (Palazzolo, 1989) the free tip response of a piezoelectric pusher is
assumed to be approximately equal to the internal prescribed displacement which is assumed
to vary linearly with input voltage. These assumptions are valid only at frequencies well below
the resonant frequency of the pusher. The phase lag of the piezoelectric pusher increases with
frequency and may cause negative active damping to occur if the phase lag is greater than 90°.
Phase lag is also introduced by the pusher drivers and other electronic components in the control
loop.

A linear time-invariant system with input f(¢) and with output r(¢) can be characterized by
its impulse response g(t), which is the response when subjected to an unit impulse input 6(t).
Once the impulse response of the linear system is known, the output of the system r(¢), with any
input f(t), may be found from the transfer function of the system. ' :

The transfer function of a linear time-invariant system is defined as the Laplace transform
of the impulse response with zero initial conditions (Kuo, 1987). In general, if a linear system

has p inputs and ¢ outputs, the transfer function between the i** output and the j** input is
defined as (
R;(S)
Gi;(S) = 2
where Fi(S) = 0, k = 1,2, ..., p, k # j.

Equivalent electrical circuits are constructed to reproduce the measured transfer (frequency
response) functions of the piezoelectric actuators and their amplifier drivers. These linear circuits
may then be assembled with the structural system equations.

An electro-mechanical representation of an AVC system, consisting of a soft-mounted pusher,
isolation pad, probe, and control devices, is shown in Figure 2. In this figure the buckout circuit
removes DC bias from the eddy current displacement sensor, the low pass filter (L.P.F.) is utilized
to reduce high frequency noise and improve stability. The figure also shows how the piezoelectric
actuator and its amplifier driver are both represented by equivalent. 2"¢ order non-inverting low
pass filters. With this model, the non-ideal characteristics of the overall system due to phase lag
and frequency dependency can be included.

The differential equation for the differentiator in Figure 2 is

Rpy ODZ) . 1 .
+ VOU + VO'U. 3
Rp2 Cp: * T RpyCpy ™ (3)

- 'in = RD10D2Vout + (
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The corresponding transfer function is then

7. = YeulS) ~Rp2Cp, 9 (4)

Vin(S)
Rp1Rp2Cp1Cp2 5% + (RDICDl + RDzC'Dz)S +1

If the variable ‘S’ in Eq.(4) is replaced by the variable ‘jw’, then Eq.(4) represents the frequency
response function of the differentiator in the frequency domain.

The differential equation for the 2™? order non-inverting low pass filter is

. RiR,C1Cy < RiCy  RiCy | RO\ 1
Vi= ——— "V — -
1 % 2+ | —R.C1 + % + I + 7 >V2+ KVz (5)
The corresponding transfer function is then
K
v S : S
@ - V25) _ (R1F2C107) | (6)

Vi($) (1 1 1 -
52 + —C‘T(R_1+‘R—£ +——‘R202(1—B)

: 1
S + R1R,C1C2

Again, if the variable ‘S’ is replaced by the variable ‘jw’ in the above equation, Eq.(6) represents
the frequency response function in the frequency domain and is shown below.

TR Va(jw) K (1)
T Vl(j-w) - (1 - RleC-'lC’ng) -+ jw[Cz(Rl + Rz) 4 (]. — k)R101]

The electrically undamped natural frequency, wn, of this circuit is defined by

1
2
- 8
n Rlecrlcz ( )

w

and the phase lag angle is

_,w[Ca(Ry + Ry) + (1 — k)R, C4]
- (2)

The following steps summarize a simple procedure to identify the resistances and capaci-
tances of an equivalent 2"¢ order non-inverting low pass filter.
a) Make a frequency response plot of the physical system.
b) Locate the cut-off frequency, wy, from this plot.
c) Assume R; = Ry and C; = Ch.

¢ = tan
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d) Select €y arbitrarily and then calculate R; by

1

wn O

Ry

e) Use K = 3 for an undamped electrical system and K < 3 for damped electrical system.

f) Construct the electrical circuit using the calculated R and C values.

g) Adjust the damping factor in the equivalent electrical circuit by varying the K value to
match the peak magnitude at the cut-off frequency location.

h) Multiply this realized frequency response function by a proper scale factor which represents
the magnitude ratio between the known and the realized frequency response functions at

w = 0.

Figure 3 shows the schematic diagram for measuring the frequency response function of a
pusher. The pusher is screwed inside a vertical steel cylinder and excited by a signal generator
through the pusher driver. The displacement of the free tip of pusher, output for the transfer
function, is measured by an eddy current probe. The exciting signal is the input for the transfer
function. Both input and output are connected to a spectrum analyzer and the results of the
transfer function are sent to a printer.

Figure 4 shows the transfer function of a typical pusher while Figure 5 shows the corre-
sponding transfer function of the equivalent 2"¢ order non-inverting low pass filter circuit with
identified R and C values. This simulation shows a very good correlation between the two trans-
fer functions when the frequency is below 4000 Hz. Note that a jet aircraft engine, depending
on the size, normally operates at speeds from 5000 rpm (83.3 Hz) up to 25000 rpm (416.6 Hz).
Furthermore, electro-mechanical instability frequencies have always occurred less than 4000 Hz,
in our testing.

ANALYSIS - ELECTRO-MECHANICAL SYSTEM MODELING
UTILIZING OPPOSING SOFT-MOUNTED ACTUATORS

The stability of the active vibration control system is affected by both the characteristics of
the mechanical system (e.g. rotor) and those of the electrical devices (e.g. actuators) used in the
control feedback loop. The characteristics, i.e. phase lag, of the electrical devices are incorporated
in the mechanical system model by including their transfer function behavior represented by
equivalent electrical circuits. Theory for the electro-mechanical model and comparisons between
predicted and measured unbalance response and stability are presented.

Electro-Mechanical Model Theory

Let two opposing, soft-mounted pushers be installed at the j** bearing of the rotor system
(see Figure 6) where mg, c;, and k; are the mass, damping, and stiffness of the j** bearing, and

kp4 and kpp are the stiffnesses of pushers A and B and the dashed blocks represent the following
components:

Block A: Inverting differentiator

Block B: 4" order non-inverting low pass filter to simulate the Ithaco filter
Block C: 2™¢ order non-inverting low pass filter to simulate pusher driver B
Block D: 2™ order non-inverting low pass filter to simulate pusher B

Block E: 27? order non-inverting low pass filter to simulate pusher driver A
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Block F: 22 order non-inverting low pass filter to simulate pusher A

Combining the mechanical and electrical differential equations for the model in Figure 6
yields

my 0 0 0 0 00 0 0 O 3
0 mpa O 0 000 00 O Za
0 0 mps 0 000 00O 5
0 0 0 RpiCp, 0 0 0 0 0 O Vi
0 0 0 0 1 00 00O Va
o 0o 0 o 010000 |%|T
0 0 0 0 001 00 0 Vy
0 0 0 0 000100 Vs
0 0 0 0 000010 Ve
0 0 0 0 000 00 1 12
c; 0 0 0 0 0 0 0 0 0 ;
0 Cra O 0 0 0 0 0 0 O i
0 0 Crz 0 0 0 0 0 0 0 ip
G0 0 (gﬁ;+ggj) 0o 0 0 0 0 0 Vi
0 0 0 0 A, 0 0 0 0 0 1‘;2 +
0 0 0 0 0 4, 0 0 0 O V3
0 0 0 0 0 0 4; 0 0 0 V‘*
0 0 0 0 0 0 0 Ay 0 0 1’/5
0 0 0 0 0 0 0 0 45 0 V-.ﬁ/
0 0 0 0 0 0 0 0 0 A T
(k]_]_ klz k13 0 0 0 0 le 0 kllO T F(t)
ko ko O 0O O O 0 O 0 koo TA 0
k31 0 k3 O 0 0 0 ksg O 0 zp 0
0 0 0 k44 0 0 0 0 0 0 rl 0
0 0 0 kss kss O 0 O 0 0 Va.of | o
0 0 0 0 ‘kes ks O O 0 0 sl | o
k71 0 0 0 0 k76 k77 0 0 0 V4 0
0 0 0 0 0 0 ks kssg O 0 Vs 0
ke 0 0 0 0 keg 0 O Fgo 0 Vs 0
0 0 0 0 0 0 0 0 kios k1010 Va 0
(10)

where

ki1 =kj +kpa +kpp kiz = —kpa kis = —kpp

kis = kppfr k110 = —kpafBs

ko1 = —kpa kao = kra + kpa k210 = kpaPBs

k31 = _kPB k33 = kRB + kpB ,k38 = _kPBﬁ7

kut = oimms

ksq = -walﬁz kss = wf

kgs = —ngz ke = wg
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k71 = ng&Bl Cl k76 - W§R,3ﬁ3/34 k77 - w§

- 2 - .2
kgr = —w4A4/35 ksg = Wy
27 _ 25 .2
kg1 = "‘W5K5B1C1 kgs = —-wsﬁsﬁsm kgg = Wy
2 1~ 2
k109 = —wsﬁeﬁs k1010 = We

and where K; is the internal zero frequency gain of the individual filter and is defined as

R, + Rp, .
Kl — 7 1] , 7 — 1,2 . ]_2
SE (12)
and )
w? i=1,2 (13)

l = b
Ryi1R3;Cy;-1C;

4; = [Czli_l (th—l " Rlzi) * 1221-6}’;  r=he (14)
Qyq = ﬁsV'( (15) ,
ap = PrVs (16)
Vo =Gz (17)

Finally 85 and B7 are the scale factors used to match the amplitudes of the transfer functions
of the pusher driver B and pusher B, respectively.

The “electromechanical” element matrices in Eq.(10) are next assembled into the structural
finite element model of the rotor bearing system described by Eq.(1). The total system model
can then be employed for free or forced vibration response simulation.

TEST RESULT CORRELATION

Figure 7 shows a diagram of the actively controlled rotor bearing system at NASA Lewis.
Each bearing has a control circuit as shown in this figure. Unbalance response was obtained by
measuring the influence coeflicients for an imbalance attached on the outboard disk. Figure
8 shows the measured influence coefficient at the outboard bearing for the controlled and
uncontrolled cases. Figure 9 shows that the predicted influence coefficient as obtained from the
electromechanical simulation model is in good agreement with the test results. The simulation
model employed a proportional damping assumption for the uncontrolled (tare) system.

The Yo velocity feedback gain was increased in Figure 7 until the system became unstable
at zero rpm. The unstable mode shape was measured and appears in Figure 10. Figure 11 shows
“that the corresponding unstable mode predicted by the electromechanical simulation model is
very similar in form and frequency. The instability onset-feedback gain was very sensitive to the
amount of passive (uncontrolled) damping of the unstable mode. The measured passive damping
ratios for this mode ranged between 0.0011 and 0.011. The measured instability onset feedback
gain (34) was 5. The predicted value was 7 with a unstable mode passive damping of 0.0011.
The utility of the simulation program as a design or trouble shooting tool for actively controlled
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systems is demonstrated in Figure 12 which shows how stability can be controlled by changing
resistance in the low pass filter.

Figure 13 shows the effectiveness of the control system in controlling two modes utilizing
both active damping and stiffness.

SUMMARY

The authors have developed a new means for simulating the electromechanical response
of rotorbearing system utilizing a piezoelectric actuator type active vibration control. The
simulation results show good agreement with those measured on a two bearing turbine-driven
test rig at NASA Lewis.
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Figure 10 Measured mode shape of unstable mode at a
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Figure 12 Effects of cutoff frequency of ANILPF on the system
instability onset gain.
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Figure 13 Midspan vibration with and without active damping and stiffness.
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