141 research outputs found

    Circular RNAs Could Encode Unique Proteins and Affect Cancer Pathways

    Get PDF
    CircRNAs constitute a novel class of RNA, generally considered as non-coding RNAs; nonetheless, their coding potential has been under scrutiny. In this work, we systematically explored the predicted proteins of more than 160,000 circRNAs detected by exome capture RNA-sequencing and collected in the MiOncoCirc pan-cancer compendium, including normal and cancer samples from different types of tissues. For the functional evaluation, we compared their primary structure and domain composition with those derived from the same linear mRNAs. Among the 4362 circRNAs potentially encoding proteins with a unique primary structure and 1179 encoding proteins with a novel domain composition, 183 were differentially expressed in cancer. In particular, eight were associated with prognosis in acute myeloid leukemia. The functional classification of the dysregulated circRNA-encoded polypeptides showed an enrichment in the heme and cancer signaling, DNA-binding, and phosphorylation processes, and disclosed the roles of some circRNA-based effectors in cancer

    Serum Uric Acid Predicts All-Cause and Cardiovascular Mortality Independently of Hypertriglyceridemia in Cardiometabolic Patients without Established CV Disease: A Sub-Analysis of the URic acid Right for heArt Health (URRAH) Study

    Get PDF
    High serum uric acid (SUA) and triglyceride (TG) levels might promote high-cardiovascular risk phenotypes across the cardiometabolic spectrum. However, SUA predictive power in the presence of normal and high TG levels has never been investigated. We included 8124 patients from the URic acid Right for heArt Health (URRAH) study cohort who were followed for over 20 years and had no established cardiovascular disease or uncontrolled metabolic disease. All-cause mortality (ACM) and cardiovascular mortality (CVM) were explored by the Kaplan-Meier estimator and Cox multivariable regression, adopting recently defined SUA cut-offs for ACM (≥4.7 mg/dL) and CVM (≥5.6 mg/dL). Exploratory analysis across cardiometabolic subgroups and a sensitivity analysis using SUA/serum creatinine were performed as validation. SUA predicted ACM (HR 1.25 [1.12-1.40], p < 0.001) and CVM (1.31 [1.11-1.74], p < 0.001) in the whole study population, and according to TG strata: ACM in normotriglyceridemia (HR 1.26 [1.12-1.43], p < 0.001) and hypertriglyceridemia (1.31 [1.02-1.68], p = 0.033), and CVM in normotriglyceridemia (HR 1.46 [1.23-1.73], p < 0.001) and hypertriglyceridemia (HR 1.31 [0.99-1.64], p = 0.060). Exploratory and sensitivity analyses confirmed our findings, suggesting a substantial role of SUA in normotriglyceridemia and hypertriglyceridemia. In conclusion, we report that SUA can predict ACM and CVM in cardiometabolic patients without established cardiovascular disease, independent of TG levels

    Serum uric acid and left ventricular mass index independently predict cardiovascular mortality: The uric acid right for heart health (URRAH) project

    Get PDF
    A relationship between serum uric acid (SUA) and cardiovascular (CV) events has been documented in the Uric Acid Right for Heart Health (URRAH) study. Aim: of this study was to investigate the association between SUA and left ventricular mass index (LVMI) and whether SUA and LVMI or their combination may predict the incidence of CV death. Methods: Subjects with echocardiographic measurement of LVMI included in the URRAH study (n=10733) were part of this analysis. LV hypertrophy (LVH) was defined as LVMI > 95 g/m2 in women and 115 g/m2 in men. Results: A significant association between SUA and LVMI was observed in multiple regression analysis in men: beta 0,095, F 5.47, P 5.6 mg/dl in men and 5.1 mg/dl in women) and LVH (log-rank chi-square 298.105; P<0.0001). At multivariate Cox regression analysis in women LVH alone and the combination of higher SUA and LVH but not hyperuricemia alone, were associated with a higher risk of CV death, while in men hyperuricemia without LVH, LVH without hyperuricemia and their combination were all associated with a higher incidence of CV death. Conclusions: Our findings demonstrate that SUA is independently associated with LVMI and suggest that the combination of hyperuricemia with LVH is an independent and powerful predictor for CV death both in men and women

    Serum Uric Acid Predicts All-Cause and Cardiovascular Mortality Independently of Hypertriglyceridemia in Cardiometabolic Patients without Established CV Disease: A Sub-Analysis of the URic acid Right for heArt Health (URRAH) Study

    Get PDF
    High serum uric acid (SUA) and triglyceride (TG) levels might promote high-cardiovascular risk phenotypes across the cardiometabolic spectrum. However, SUA predictive power in the presence of normal and high TG levels has never been investigated. We included 8124 patients from the URic acid Right for heArt Health (URRAH) study cohort who were followed for over 20 years and had no established cardiovascular disease or uncontrolled metabolic disease. All-cause mortality (ACM) and cardiovascular mortality (CVM) were explored by the Kaplan-Meier estimator and Cox multivariable regression, adopting recently defined SUA cut-offs for ACM (&gt;= 4.7 mg/dL) and CVM (&gt;= 5.6 mg/dL). Exploratory analysis across cardiometabolic subgroups and a sensitivity analysis using SUA/serum creatinine were performed as validation. SUA predicted ACM (HR 1.25 [1.12-1.40], p &lt; 0.001) and CVM (1.31 [1.11-1.74], p &lt; 0.001) in the whole study population, and according to TG strata: ACM in normotriglyceridemia (HR 1.26 [1.12-1.43], p &lt; 0.001) and hypertriglyceridemia (1.31 [1.02-1.68], p = 0.033), and CVM in normotriglyceridemia (HR 1.46 [1.23-1.73], p &lt; 0.001) and hypertriglyceridemia (HR 1.31 [0.99-1.64], p = 0.060). Exploratory and sensitivity analyses confirmed our findings, suggesting a substantial role of SUA in normotriglyceridemia and hypertriglyceridemia. In conclusion, we report that SUA can predict ACM and CVM in cardiometabolic patients without established cardiovascular disease, independent of TG levels

    MASked-unconTrolled hypERtension management based on office BP or on ambulatory blood pressure measurement (MASTER) Study: a randomised controlled trial protocol

    Get PDF
    INTRODUCTION: Masked uncontrolled hypertension (MUCH) carries an increased risk of cardiovascular (CV) complications and can be identified through combined use of office (O) and ambulatory (A) blood pressure (BP) monitoring (M) in treated patients. However, it is still debated whether the information carried by ABPM should be considered for MUCH management. Aim of the MASked-unconTrolled hypERtension management based on OBP or on ambulatory blood pressure measurement (MASTER) Study is to assess the impact on outcome of MUCH management based on OBPM or ABPM. METHODS AND ANALYSIS: MASTER is a 4-year prospective, randomised, open-label, blinded-endpoint investigation. A total of 1240 treated hypertensive patients from about 40 secondary care clinical centres worldwide will be included -upon confirming presence of MUCH (repeated on treatment OBP <140/90 mm Hg, and at least one of the following: daytime ABP ≥135/85 mm Hg; night-time ABP ≥120/70 mm Hg; 24 hour ABP ≥130/80 mm Hg), and will be randomised to a management strategy based on OBPM (group 1) or on ABPM (group 2). Patients in group 1 will have OBP measured at 0, 3, 6, 12, 18, 24, 30, 36, 42 and 48 months and taken as a guide for treatment; ABPM will be performed at randomisation and at 12, 24, 36 and 48 months but will not be used to take treatment decisions. Patients randomised to group 2 will have ABPM performed at randomisation and all scheduled visits as a guide to antihypertensive treatment. The effects of MUCH management strategy based on ABPM or on OBPM on CV and renal intermediate outcomes (changing left ventricular mass and microalbuminuria, coprimary outcomes) at 1 year and on CV events at 4 years and on changes in BP-related variables will be assessed. ETHICS AND DISSEMINATION: MASTER study protocol has received approval by the ethical review board of Istituto Auxologico Italiano. The procedures set out in this protocol are in accordance with principles of Declaration of Helsinki and Good Clinical Practice guidelines. Results will be published in accordance with the CONSORT statement in a peer-reviewed scientific journal. TRIAL REGISTRATION NUMBER: NCT02804074; Pre-results

    Anion activation of dopamine beta-hydroxylase: a kinetic model.

    No full text
    1. A theoretical analysis has been made of the mechanism of anion activation of dopamine beta-hydroxylase on the basis of accumulated experimental data. A model is presented that accounts for the numerous different effects of activating anions on the enzyme kinetics. This model has a general validity, since it holds for any of the kinetic mechanisms thus far proposed for dopamine beta-hydroxylase. 2. It has been shown that the results of this analysis have direct implications for the experimental conditions to be used in the study of the dopamine beta-hydroxylase reaction. 3. The present analysis has proved that, under appropriate assumptions, theoretical treatment of nonessential activation, so far limited to the single-substrate case, can be easily extended to steady-state multireactant enzymes

    A new plot for multiple enzyme inhibition

    No full text
    A new graphical method is described for analyzing the results of multiple inhibition experiments. It is applicable to either single- or multi-substrate enzyme systems obeying Michaelis-Menten kinetics and is valid irrespective of the type of inhibition (competitive, noncompetitive, uncompetitive, mixed). According to this method, mutually exclusive inhibitor binding gives rise to lines that converge on the vertical axis, whereas mutually nonexclusive inhibitors yield lines that intersect to the left of the vertical axis. It has been pointed out that the inhibitor interaction factor can be determined directly from multiple inhibition experiments only if at least one of the inhibitors is noncompetitive. When this is the case, the present plot provides a very simple way of determining the inhibitor interaction factor from the coordinates of the intersection poin

    Pharmacokinetic drug interactions in liver disease: An update

    No full text

    Fumarate is the cause of the apparent ping-pong kinetics of dopamine beta-hydroxylase.

    No full text
    The kinetic mechanism of dopamine beta-hydroxylase (dopamine beta-monooxygenase EC 1.14.17.1) was studied either in the absence or the presence of the nonessential activator fumarate. In the absence of fumarate, intersecting initial velocity patterns were obtained, consistent with a sequential mechanism. In the presence of saturating concentrations of fumarate, initial velocity patterns became parallel. Other activating anions, such as acetate and chloride, could replicate the effects of fumarate. Since previous initial rate studies of dopamine beta-hydroxylase have been performed in the presence of saturating concentrations of fumarate, the present results may explain why parallel initial velocity patterns, apparently consistent with a ping-pong mechanism, have been so far observed. As a plausible mechanism of the anion effect it is proposed that activating anions induce saturation of the enzyme with oxygen
    • …
    corecore