7,914 research outputs found
Necessary and sufficient condition for longitudinal magnetoresistance
Since the Lorentz force is perpendicular to the magnetic field, it should not
affect the motion of a charge along the field. This argument seems to imply
absence of longitudinal magnetoresistance (LMR) which is, however, observed in
many materials and reproduced by standard semiclassical transport theory
applied to particular metals. We derive a necessary and sufficient condition on
the shape of the Fermi surface for non-zero LMR. Although an anisotropic
spectrum is a pre-requisite for LMR, not all types of anisotropy can give rise
to the effect: a spectrum should not be separable in any sense. More precisely,
the combination , where is the radial
component of the momentum in a cylindrical system with the z-axis along the
magnetic field and ) is the radial (tangential) component
of the velocity, should depend on the momentum along the field. For some
lattice types, this condition is satisfied already at the level of
nearest-neighbor hopping; for others, the required non-separabality occurs only
if next-to-nearest-neighbor hopping is taken into account.Comment: 7 pages, 2 figure
SU(16) grandunification: breaking scales, proton decay and neutrino magnetic moment
We give a detailed renormalization group analysis for the SU(16) grandunified
group with general breaking chains in which quarks and leptons transform
separately at intermediate energies. Our analysis includes the effects of Higgs
bosons. We show that the grandunification scale could be as low as GeV and give examples where new physics could exist at relatively low
energy ( GeV). We consider proton decay in this model and show that
it is consistent with a low grandunification scale. We also discuss the
possible generation of a neutrino magnetic moment in the range of to
with a very small mass by the breaking of the embedded
SU(2) symmetry at a low energy.Comment: (16 pages in REVTEX + 6 figures not included) OITS-49
Braneworlds in six dimensions: new models with bulk scalars
Six dimensional bulk spacetimes with 3-- and 4--branes are constructed using
certain non--conventional bulk scalars as sources. In particular, we
investigate the consequences of having the phantom (negative kinetic energy)
and the Brans--Dicke scalar in the bulk while obtaining such solutions. We find
geometries with 4--branes with a compact on--brane dimension (hybrid
compactification) which may be assumed to be small in order to realize a
3--brane world. On the other hand, we also construct, with similar sources,
bulk spacetimes where a 3--brane is located at a conical singularity.
Furthermore, we investigate the issue of localization of matter fields (scalar,
fermion, graviton, vector) on these 3-- and 4--branes and conclude with
comments on our six dimensional models.Comment: 24 pages, 1 figure, Replaced to match version published in Class.
Quant. Gra
"TNOs are Cool": A survey of the trans-Neptunian region VI. Herschel/PACS observations and thermal modeling of 19 classical Kuiper belt objects
Trans-Neptunian objects (TNO) represent the leftovers of the formation of the
Solar System. Their physical properties provide constraints to the models of
formation and evolution of the various dynamical classes of objects in the
outer Solar System. Based on a sample of 19 classical TNOs we determine
radiometric sizes, geometric albedos and beaming parameters. Our sample is
composed of both dynamically hot and cold classicals. We study the correlations
of diameter and albedo of these two subsamples with each other and with orbital
parameters, spectral slopes and colors. We have done three-band photometric
observations with Herschel/PACS and we use a consistent method for data
reduction and aperture photometry of this sample to obtain monochromatic flux
densities at 70.0, 100.0 and 160.0 \mu m. Additionally, we use Spitzer/MIPS
flux densities at 23.68 and 71.42 \mu m when available, and we present new
Spitzer flux densities of eight targets. We derive diameters and albedos with
the near-Earth asteroid thermal model (NEATM). As auxiliary data we use
reexamined absolute visual magnitudes from the literature and data bases, part
of which have been obtained by ground based programs in support of our Herschel
key program. We have determined for the first time radiometric sizes and
albedos of eight classical TNOs, and refined previous size and albedo estimates
or limits of 11 other classicals. The new size estimates of 2002 MS4 and 120347
Salacia indicate that they are among the 10 largest TNOs known. Our new results
confirm the recent findings that there are very diverse albedos among the
classical TNOs and that cold classicals possess a high average albedo (0.17 +/-
0.04). Diameters of classical TNOs strongly correlate with orbital inclination
in our sample. We also determine the bulk densities of six binary TNOs.Comment: 21 pages, 9 figures, accepted for publication in Astronomy and
Astrophysic
Lepton Flavor Violation and the Tau Neutrino Mass
We point out that, in the left-right symmetric model of weak interaction, if
mass is in the keV to MeV range, there is a strong correlation
between rare decays such as and
the mass. In particular, we point out that a large range of
masses are forbidden by the cosmological constraints on
in combination with the present upper limits on these processes.Comment: UMDHEP 94-30, 14 pages, TeX file, (some new references added
Isotope thermometery in nuclear multifragmentation
A systematic study of the effect of fragmentfragment interaction, quantum
statistics, -feeding and collective flow is made in the extraction of
the nuclear temperature from the double ratio of the isotopic yields in the
statistical model of one-step (Prompt) multifragmentation. Temperature is also
extracted from the isotope yield ratios generated in the sequential
binary-decay model. Comparison of the thermodynamic temperature with the
extracted temperatures for different isotope ratios show some anomaly in both
models which is discussed in the context of experimentally measured caloric
curves.Comment: uuencoded gzipped file containing 20 pages of text in REVTEX format
and 12 figures (Postscript files). Physical Review C (in press
Neutrino spin rotation in dense matter and electromagnetic field
Exact solutions of the Dirac--Pauli equation for massive neutrino with
anomalous magnetic moment interacting with dense matter and strong
electromagnetic field are found. The complete system of neutrino wavefunctions,
which show spin rotation properties are obtained and their possible
applications are discussed.Comment: 11 pages, latex, misprints are correcte
Anomalous orbital structure in two-dimensional titanium dichalcogenides
Generally, lattice distortions play a key role in determining the ground
states of materials. Although it is well known that trigonal distortions are
generic to most two-dimensional transition metal dichalcogenides, the impact of
this structural distortion on the electronic structure has not been understood
conclusively. Here, by using a combination of polarization dependent X-ray
absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS) and
atomic multiplet cluster calculations, we have investigated the electronic
structure of titanium dichalcogenides TiX2 (X=S, Se, Te), where the magnitude
of the trigonal distortion increase monotonically from S to Se and Te. Our
results reveal the presence of an anomalous and large crystal filed splitting.
This unusual kind of crystal field splitting is likely responsible for the
unconventional electronic structure of TiX2 compounds. Our results also
indicate the drawback of the distorted crystal field picture in explaining the
observed electronic ground state of these materials and emphasize the key
importance of metal-ligand hybridization and electronic correlation in defining
the electronic structures near Fermi energy
- …