266 research outputs found

    Non-ideal particle distributions from kinetic freeze out models

    Get PDF
    In fluid dynamical models the freeze out of particles across a three dimensional space-time hypersurface is discussed. The calculation of final momentum distribution of emitted particles is described for freeze out surfaces, with both space-like and time-like normals, taking into account conservation laws across the freeze out discontinuity

    Freeze-out in hydrodynamical models in relativistic heavy ion collisions

    Get PDF
    In continuum and fluid dynamical models, particles, which leave the system and reach the detectors, can be taken into account via freeze-out (FO) or final break-up schemes, where the frozen out particles are formed on a 3-dimensional hypersurface in space-time. Such FO descriptions are important ingredients of evaluations of two-particle correlation data, transverse-, longitudinal-, radial- and cylindrical- flow analyses, transverse momentum and transverse mass spectra and many other observables. The FO on a hypersurface is a discontinuity, where the pre FO equilibrated and interacting matter abruptly changes to non-interacting particles, showing an ideal gas type of behavior

    Freeze out in hydrodynamical models

    Get PDF
    We study the effects of strict conservation laws and the problem of negative contributions to final momentum distribution during the freeze out through 3-dimensional hypersurfaces with space-like normal. We study some suggested solutions for this problem, and demonstrate it on one example. PACS: 24.10.Nz, 25.75.-

    Large p(t) enhancement from freeze out

    Get PDF
    Freeze out of particles across three dimensional space-time hypersurface is discussed in a simple kinetic model. The final momentum distribution of emitted particles, for freeze out surfaces with space-like normal, shows a non-exponential transverse momentum spectrum. The slope parameter of the pt distribution increases with increasing pt, in agreement with recently measured SPS pion and h spectra

    Kinetic freeze out models

    Get PDF
    Freeze out of particles across a space-time hypersurface is discussed in kinetic models. The calculation of final momentum distribution of emitted particles is described for freeze out surfaces, with spacelike normals. The resulting non-equilibrium distribution does not resemble, the previously proposed, cut Jüttner distribution, and shows non-exponential pt-spectra similar to the ones observed in experiments. PACS: 24.10.Nz, 25.75.-

    Differential impact of simultaneous migration on coevolving hosts and parasites

    Get PDF
    BACKGROUND: The dynamics of antagonistic host-parasite coevolution are believed to be crucially dependent on the rate of migration between populations. We addressed how the rate of simultaneous migration of host and parasite affected resistance and infectivity evolution of coevolving meta-populations of the bacterium Pseudomonas fluorescens and a viral parasite (bacteriophage). The increase in genetic variation resulting from small amounts of migration is expected to increase rates of adaptation of both host and parasite. However, previous studies suggest phages should benefit more from migration than bacteria; because in the absence of migration, phages are more genetically limited and have a lower evolutionary potential compared to the bacteria. RESULTS: The results supported the hypothesis: migration increased the resistance of bacteria to their local (sympatric) hosts. Moreover, migration benefited phages more than hosts with respect to 'global' (measured with respect to the whole range of migration regimes) patterns of resistance and infectivity, because of the differential evolutionary responses of bacteria and phage to different migration regimes. Specifically, we found bacterial global resistance peaked at intermediate rates of migration, whereas phage global infectivity plateaued when migration rates were greater than zero. CONCLUSION: These results suggest that simultaneous migration of hosts and parasites can dramatically affect the interaction of host and parasite. More specifically, the organism with the lower evolutionary potential may gain the greater evolutionary advantage from migration

    Organizing IoT Systems-of-Systems from standardized engineering data

    Full text link
    Tackling current challenges in production automation requiresthe involvement of new concepts like Internet of Things,System-of-Systems and local automation clouds.The objective of this paper is to address the actual process of defining a cloud based automation system. More specifically the design, engineering, operation and maintenance of an automation system must be captured and managed between all stakeholders involved. This is critical to create the expected benefits from the local automation cloud approach.This paper addresses the capability of capturing plant designs and coordinating information exchange based on the captured architecture.For this purpose an architectural component --~Plant Description~-- is proposed to be used in the Arrowhead Framework, based on already existing plant automation standards.An overview of methodologies on how it can interact with the Arrowhead Framework's Orchestration process describes the usefulness in managing large-scale automation systems.A qualitative evaluation for one of the proposed approaches is also described in a water control use case that can be found both in process and building automation

    The mass and density of the dwarf planet (225088) 2007 OR10

    Full text link
    The satellite of (225088) 2007 OR10 was discovered on archival Hubble Space Telescope images and along with new observations with the WFC3 camera in late 2017 we have been able to determine the orbit. The orbit's notable eccentricity, e≈\approx0.3, may be a consequence of an intrinsically eccentric orbit and slow tidal evolution, but may also be caused by the Kozai mechanism. Dynamical considerations also suggest that the moon is small, Deff_{eff} << 100 km. Based on the newly determined system mass of 1.75x1021^{21} kg, 2007 OR10 is the fifth most massive dwarf planet after Eris, Pluto, Haumea and Makemake. The newly determined orbit has also been considered as an additional option in our radiometric analysis, provided that the moon orbits in the equatorial plane of the primary. Assuming a spherical shape for the primary this approach provides a size of 1230±\pm50 km, with a slight dependence on the satellite orbit orientation and primary rotation rate chosen, and a bulk density of 1.75±\pm0.07 g cm−3^{-3} for the primary. A previous size estimate that assumed an equator-on configuration (1535−225+75^{+75}_{-225} km) would provide a density of 0.92−0.14+0.46^{+0.46}_{-0.14} g cm−3^{-3}, unexpectedly low for a 1000 km-sized dwarf planet.Comment: Accepted for publication in Icaru
    • …
    corecore