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Large pt enhancement from freeze out
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Abstract

Freeze out of particles across three dimensional space-time hypersurface is discussed
in a simple kinetic model. The final momentum distribution of emitted particles,
for freeze out surfaces with space-like normal, shows a non-exponential transverse
momentum spectrum. The slope parameter of the pt distribution increases with
increasing pt, in agreement with recently measured SPS pion and h− spectra.
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1 Introduction

In continuum and fluid dynamical models, particles, which leave the system
and reach the detectors, can be taken into account via freeze out (FO) or final
break-up schemes, where the frozen out particles are formed on a 3-dimensional
hypersurface in space-time. Such FO descriptions are important ingredients of
evaluations of two-particle correlation data, transverse-, longitudinal-, radial-
, and cylindrical- flow analyses, transverse momentum and transverse mass
spectra and many other observables. The FO on a hypersurface is a disconti-
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nuity where the pre-FO equilibrated and interacting matter abruptly changes
to non-interacting particles, showing an ideal gas type of behavior.

The general theory of discontinuities in relativistic flow was not worked out
for a long time, and the 1948 work of A. Taub (1) discussed discontinuities
across propagating hypersurfaces only (which have a space-like unit normal
vector, dσ̂µdσ̂µ = −1). Events happening on a propagating, (2 dimensional)
surface belong to this category. An overall sudden change in a finite volume
is represented by a hypersurface with a time-like normal, dσ̂µdσ̂µ = +1. The
freeze out surface is frequently a surface with time like normal. In 1987 Taub’s
approach was generalized to both types of surfaces (2), making it possible to
take into account conservation laws exactly across any surface of discontinuity
in relativistic flow. When the EoS is different on the two sides of the freeze
out front these conservation laws yield changing temperature, density, flow
velocity across the front (3; 4; 5; 6; 7).

2 Conservation laws across idealized freeze out fronts

The freeze out surface is an idealization of a layer of finite thickness (of the
order of a mean free path or collision time) where the frozen-out particles are
formed and the interactions in the matter become negligible.

To use well-known Cooper-Frye formula (3)

E
dN

d3p
=

∫
fFO(x, p; T, n, uν) pµdσµ (1)

we have to know the post-FO distribution of frozen out particles, fFO(x, p; T, n, uν),
which is not known from the fluid dynamical model. To evaluate measurables
we have to know the correct parameters of the matter after the FO discon-
tinuity! The post freeze out distribution need not be a thermal distribution!
In fact fFO should contain only particles which cross the FO-front outwards,
pµdσ̂µ > 0, so if dσ̂µ is space-like this seriously constrains the shape of fFO.
This problem was recognized in recent years, and the first suggestions for the
solution were published recently (4; 5; 6; 7).

If we know the pre freeze out baryon current and energy-momentum tensor,
Nµ

0 and T µν
0 , we can calculate locally, across a surface element of normal

vector dσ̂µ the post freeze out quantities, Nµ and T µν , from the relations
(1; 2): [Nµ dσ̂µ] = 0 and [T µν dσ̂µ] = 0, where [A] ≡ A − A0. In numerical
calculations the local freeze out surface can be determined most accurately
via self-consistent iteration (4; 9).
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3 Freeze out distribution from kinetic theory

We present a kinetic model simplified to the limit where we can obtain a post
FO particle momentum distribution. Let us assume an infinitely long tube
with its left half (x < 0) filled with nuclear mater and in the right vacuum is
maintained. We can remove the dividing wall at t = 0, and then the matter
will expand into the vacuum. By continuously removing particles at the right
end of the tube and supplying particles on the left end, we can establish a
stationary flow in the tube, where the particles will gradually freeze out in an
exponential rarefraction wave propagating to the left in the matter. We can
move with this front, so that we describe it from the reference frame of the
front (RFF).

We can describe the freeze out kinetics on the r.h.s. of the tube assuming
that we have two components of our momentum distribution, ffree(x, ~p) and
fint(x, ~p). However, we assume that at x = 0, ffree vanishes exactly and fint

is an ideal Jüttner distribution, then fint gradually disappears and ffree grad-
ually builds up.

Rescattering within the interacting component will lead to re-thermalization
and re-equilibration of this component. Thus, the evolution of the component,
fint is determined by drain terms and the re-equilibration.

We use the relaxation time approximation to simplify the description of the
dynamics. Then the two components of the momentum distribution develop
according to the coupled differential equations:

∂xfint(x, ~p)dx = −Θ(pµdσ̂µ)
cos θ~p

λ
fint(x, ~p)dx+

+ [feq(x, ~p) − fint(x, ~p)] 1
λ′

dx,

(2)

∂xffree(x, ~p)dx = +Θ(pµdσ̂µ)
cos θ~p

λ
fint(x, ~p)dx. (3)

Here cos θ~p = px/p in the RFF frame. The first (loss) term in eq. (2) is an
overly simplified approximation to the model presented in ref. (5). It expresses
the fact that particles with momenta orthogonal to the FO surface (cos θ~p = 1)
leave the system with bigger probability than particles emitted at an angle.
The interacting component of the momentum distribution, described by eq.
(2), shows the tendency to approach an equilibrated distribution with a relax-
ation length λ′. Of course, due to the energy, momentum and particle drain,
this distribution, feq(x, ~p) is not the same as the initial Jüttner distribution,
but its parameters, neq(x), Teq(x) and uµ

eq(x), change as required by the con-
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servation laws.

In this case the change of the conserved quantities caused by the particle
transfer from component int to component free can be obtained in terms of
the distribution functions as:

dNµ
i = −

dx

λ

∫
d3p

p0

pµΘ(pµdσ̂µ) cos θ~pfint(x, ~p) (4)

and

dT µν
i = −

dx

λ

∫
d3p

p0
pµpνΘ(pµdσ̂µ) cos θ~pfint(x, ~p). (5)

Due to the collision or relaxation terms T µν and Nµ change, and this should
be considered in the modified distribution function fint(x, ~p).

3.1 Immediate re-thermalization limit

Let us assume that λ′ ≪ λ, i.e. re-thermalization is much faster than particles
freezing out, or much faster than parameters, neq(x), Teq(x) and uµ

eq(x) change.
Then fint(x, ~p) ≈ feq(x, ~p), for λ′ ≪ λ .

For feq(x, ~p) we assume the spherical Jüttner form at any x including both pos-
itive and negative momentum parts with parameters n(x), T (x) and uµ

RFG(x).
(Here uµ

RFG(x) is the actual flow velocity of the interacting, Jüttner compo-
nent, i.e. the velocity of the Rest Frame of the Gas (RFG) (4)).

In this case the change of conserved quantities due to particle drain or transfer
can be evaluated for an infinitesimal dx. The changes of the conserved particle
currents and energy-momentum tensor in the RFF, eqs. (4, 5) are given in ref.
(5). The new parameters of distribution fint, after moving to the right by dx
can be obtained from dNµ

i and dT µν
i . The differential equation describing the

change of the proper particle density is (5):

dni(x) = uµ
i,RFG(x) dNi,µ(x) . (6)

Although this covariant equation is valid in any frame, dNµ
i are calculated in

the RFF (5).

For the re-thermalized interacting component the change of Eckart’s flow ve-
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locity is given by

duµ
i,E,RFG(x) = ∆µν

i (x)
dNi,ν(x)

ni(x)
, (7)

where ∆µν
i (x) = gµν − uµ

i,RFG(x) uν
i,RFG(x) is a projector to the plane orthog-

onal to uµ
i,RFG(x), while the change of Landau’s flow velocity is (5)

duµ
i,L,RFG(x) =

∆µν
i (x) dTi,νσ uσ

i,RFG(x)

ei + Pi

. (8)

Although, for the spherical Jüttner distribution the Landau and Eckart flow
velocities are the same, the change of this flow velocity calculated from the loss
of baryon current and from the loss of energy current are different duµ

i,E,RFG(x) 6=
duµ

i,L,RFG(x) . This is a clear consequence of the asymmetry caused by the
freeze out process as it was discussed in ref. (5), i.e., the cut by Θ(pµdσ̂µ)
changes the particle flow and energy-momentum flow differently. This prob-
lem does not occur for the freeze out of baryonfree plasma, and we have only
duµ

i,L.
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Fig. 1. The local transverse momentum (here px) distribution for baryon free, mass-
less gas at py = 0, x = 100λ and T0 = 130MeV. The transverse momentum spec-
trum is obviously curved due to the freeze out process, particularly for large initial
flow velocities. The apparent slope parameter increases with increasing transverse
momentum. This behavior agrees with observed pion transverse mass spectra at
SPS (10; 11).

The last task is to determine the change of the temperature parameter of fint.
From the relation e ≡ uµT

µνuν we readily obtain the expression for the change
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of energy density

dei(x) = uµ,i,RFG(x) dT µν
i (x) uν,i,RFG(x) , (9)

and from the relation between the energy density and the temperature (see
Chapter 3 in ref. (8)), we can obtain the new temperature at x + dx. Fixing
these parameters we fully determined the spherical Jüttner approximation for
fint.

The application of this model to the baryonfree and massless gas gives the
following coupled set of equations:

d lnT

dx
=−

uµτ
µνuν

4σSB

,

(10)

duµ

dx
=−

3

4σSB

[τµν − uµuστ
σν ] uν .

Here we use the EoS, e = σSBT 4, the definition dT µν = −dx τµνT 4, and x
is measured in units of λ.

Now we can find the distribution function for the noninteracting, frozen out
part of particles according to equation (3). The results are shown in Fig. 1.
We would like to note that now fint(x, ~p) does not tend to the cut Jüttner
distribution in the limit x → ∞. Furthermore, we obtain that T → 0, when
x → ∞ (5). So, fint(x, ~p) = 1

(2πh̄)3
exp[(µ−pνuν)/T ] → 0, when x → ∞. Thus,

all particles freeze out in the present model, but such a physical FO requires
infinite distance (or time). This second problem may also be removed by using
volume emission model discussed in (7).

4 Conclusions

In a simple kinetic model we evaluated the freeze out distribution, ffree(x, p),
for
stationary freeze out across a surface with space-like normal vector, dσ̂µdσ̂µ <
0. In this model particles penetrating the surface outwards were allowed to
freeze out with a probability ∼ cos θ~p, and the remaining interacting compo-
nent is assumed to be instantly re-thermalized. The three parameters of the
interacting component, fint, are obtained in each time step. The density of
the interacting component gradually decreases and disappears, the flow ve-
locity also decreases and the energy density decreases. The temperature, as
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a consequence of the gradual change in the emission mechanism, gradually
decreases.

The arising post freeze out distribution, ffree is a superposition of cut Jüttner
type of components, from a series of gradually slowing down Jüttner distri-
butions. This leads to a final momentum distribution, with a more dominant
peak at zero momentum and a forward halo, Fig. 1. In this rough model a
large fraction (∼ 95%) of the matter is frozen out by x = 3λ, thus, the dis-
tribution ffree at this distance can be considered as a first estimation of the
post freeze out distribution. One should also keep in mind that the model
presented here does not have realistic behavior in the limit x −→ ∞, due to
its one dimensional character.

These studies indicate that more attention should be paid to the final freeze
out process, because a realistic freeze out description may lead to large pt en-
hancement (10; 11) as the considerations above indicate (Fig. 1). For accurate
estimates more realistic models should be used. In case of rapid hadronization
of QGP and simultaneous freeze out, the idealization of a freeze out hypersur-
face may be justified, however, an accurate determination of the post freeze
out hadron momentum distribution would require a nontrivial dynamical cal-
culation.
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