27 research outputs found

    Limit theorems for power variations of ambit fields driven by white noise

    Get PDF
    We study the asymptotics of lattice power variations of two-parameter ambit fields driven by white noise. Our first result is a law of large numbers for power variations. Under a constraint on the memory of the ambit field, normalized power variations converge to certain integral functionals of the volatility field associated to the ambit field, when the lattice spacing tends to zero. This result holds also for thinned power variations that are computed by only including increments that are separated by gaps with a particular asymptotic behavior. Our second result is a stable central limit theorem for thinned power variations. © 2014 Elsevier B.V. All rights reserved

    Turbocharging Monte Carlo pricing for the rough Bergomi model

    Get PDF
    The rough Bergomi model, introduced by Bayer, Friz and Gatheral [Quant. Finance 16(6), 887-904, 2016], is one of the recent rough volatility models that are consistent with the stylised fact of implied volatility surfaces being essentially time-invariant, and are able to capture the term structure of skew observed in equity markets. In the absence of analytical European option pricing methods for the model, we focus on reducing the runtime-adjusted variance of Monte Carlo implied volatilities, thereby contributing to the model's calibration by simulation. We employ a novel composition of variance reduction methods, immediately applicable to any conditionally log-normal stochastic volatility model. Assuming one targets implied volatility estimates with a given degree of confidence, thus calibration RMSE, the results we demonstrate equate to significant runtime reductions - roughly 20 times on average, across different correlation regimes

    Hybrid marked point processes: characterisation, existence and uniqueness

    Get PDF
    We introduce a class of hybrid marked point processes, which encompasses and extends continuous-time Markov chains and Hawkes processes. While this flexible class amalgamates such existing processes, it also contains novel processes with complex dynamics. These processes are defined implicitly via their intensity and are endowed with a state process that interacts with past-dependent events. The key example we entertain is an extension of a Hawkes process, a state-dependent Hawkes process interacting with its state process. We show the existence and uniqueness of hybrid marked point processes under general assumptions, extending the results of Massouli\'e (1998) on interacting point processes

    Hybrid simulation scheme for volatility modulated moving average fields

    Get PDF
    We develop a simulation scheme for a class of spatial stochastic processes called volatility modulated moving averages. A characteristic feature of this model is that the behaviour of the moving average kernel at zero governs the roughness of realisations, whereas its behaviour away from zero determines the global properties of the process, such as long range dependence. Our simulation scheme takes this into account and approximates the moving average kernel by a power function around zero and by a step function elsewhere. For this type of approach the authors of [8], who considered an analogous model in one dimension, coined the expression hybrid simulation scheme. We derive the asymptotic mean square error of the simulation scheme and compare it in a simulation study with several other simulation techniques and exemplify its favourable performance in a simulation study

    On the conditional small ball property of multivariate Lévy-driven moving average processes

    Get PDF
    We study whether a multivariate Lévy-driven moving average process can shadow arbitrarily closely any continuous path, starting from the present value of the process, with positive conditional probability, which we call the conditional small ball property. Our main results establish the conditional small ball property for Lévy-driven moving average processes under natural non-degeneracy conditions on the kernel function of the process and on the driving Lévy process. We discuss in depth how to verify these conditions in practice. As concrete examples, to which our results apply, we consider fractional Lévy processes and multivariate Lévy-driven Ornstein–Uhlenbeck processes

    Functional limit theorems for generalized variations of the fractional Brownian sheet

    Get PDF
    We prove functional central and non-central limit theorems for generalized variations of the anisotropic d-parameter fractional Brownian sheet (fBs) for any natural number d. Whether the central or the non-central limit theorem applies depends on the Hermite rank of the variation functional and on the smallest component of the Hurst parameter vector of the fBs. The limiting process in the former result is another fBs, independent of the original fBs, whereas the limit given by the latter result is an Hermite sheet, which is driven by the same white noise as the original fBs. As an application, we derive functional limit theorems for power variations of the fBs and discuss what is a proper way to interpolate them to ensure functional convergence

    Limit theorems for trawl processes

    Get PDF
    In this work we derive limit theorems for trawl processes. First, we study the asymptotic behavior of the partial sums of the discretized trawl process (Xi∆n ) bntc−1 i=0 , under the assumption that as n ↑ ∞, ∆n ↓ 0 and n∆n → µ ∈ [0, +∞]. Second, we prove a general result on functional convergence in distribution of trawl processes. As an application of this result, we show that a trawl process whose L´evy measure tends to infinity converges in distribution, under suitable rescaling, to a Gaussian moving average process

    State-dependent Hawkes processes and their application to limit order book modelling

    Get PDF
    We study statistical aspects of state-dependent Hawkes processes, which are an extension of Hawkes processes where a self- and cross-exciting counting process and a state process are fully coupled, interacting with each other. The excitation kernel of the counting process depends on the state process that, reciprocally, switches state when there is an event in the counting process. We first establish the existence and uniqueness of state-dependent Hawkes processes and explain how they can be simulated. Then we develop maximum likelihood estimation methodology for parametric specifications of the process. We apply state-dependent Hawkes processes to high-frequency limit order book data, allowing us to build a novel model that captures the feedback loop between the order flow and the shape of the limit order book. We estimate two specifications of the model, using the bid–ask spread and the queue imbalance as state variables, and find that excitation effects in the order flow are strongly state-dependent. Additionally, we find that the endogeneity of the order flow, measured by the magnitude of excitation, is also state-dependent, being more pronounced in disequilibrium states of the limit order book

    Decoupling the short- and long-term behavior of stochastic volatility

    No full text
    We introduce a new class of continuous-time models of the stochastic volatility of asset prices. The models can simultaneously incorporate roughness and slowly decaying autocorrelations, including proper long memory, which are two stylized facts often found in volatility data. Our prime model is based on the so-called Brownian semistationary process and we derive a number of theoretical properties of this process, relevant to volatility modeling. Applying the models to realized volatility measures covering a vast panel of assets, we find evidence consistent with the hypothesis that time series of realized measures of volatility are both rough and very persistent. Lastly, we illustrate the utility of the models in an extensive forecasting study; we find that the models proposed in this paper outperform a wide array of benchmarks considerably, indicating that it pays off to exploit both roughness and persistence in volatility forecasting

    Pathwise large deviations for the rough Bergomi model

    No full text
    Introduced recently in mathematical finance by Bayer et al. (2016), the rough Bergomi model has proved particularly efficient to calibrate option markets. We investigate some of its probabilistic properties, in particular proving a pathwise large deviations principle for a small-noise version of the model. The exponential function (continuous but superlinear) as well as the drift appearing in the volatility process fall beyond the scope of existing results, and a dedicated analysis is needed
    corecore