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Abstract

We develop a simulation scheme for a class of spatial stochastic pro-

cesses called volatility modulated moving averages. A characteristic fea-

ture of this model is that the behaviour of the moving average kernel at

zero governs the roughness of realisations, whereas its behaviour away

from zero determines the global properties of the process, such as long

range dependence. Our simulation scheme takes this into account and

approximates the moving average kernel by a power function around zero

and by a step function elsewhere. For this type of approach, Bennedsen

et al. [8], who considered an analogous model in one dimension, coined the

term hybrid simulation scheme. We derive the asymptotic mean square

error of the simulation scheme and compare it in a simulation study with

several other simulation techniques and exemplify its favourable perfor-

mance in a simulation study.
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1 Introduction

In this article we develop a simulation scheme for real-valued random fields

that we call volatility modulated moving average (VMMA) fields. A VMMA

is defined by the formula

Xt =

∫
R2

g(t− s)σsW (ds), (1.1)

where W is Gaussian white noise, g ∈ L2(R2) is a deterministic kernel, and σ

is a random volatility field. This model has been used for the statistical mod-

elling of spatial phenomena in various disciplines, examples being modelling

of vegetation and nitrate deposition [25], of sea surface temperature [32] and

of wheat yields [42].

We are interested in the case where the moving average kernel g has a

singularity at zero. In this situation, the order of the singularity coincides with

a smoothness parameter that specifies the Hausdorff dimension of the random

field. Allowing for parametrisation of smoothness is necessary for a model to be

useful in spatial prediction, see [37]. Our model exhibits Hausdorff dimension

greater 2 and has therefore rough, non-differentiable realisations. Such models

are used, for example, in surface modelling, where specific examples include

seafloor morphology [19] or the surface modelling of celestial bodies [21].

A particular challenge in simulating volatility modulated moving averages

lies in recovering the roughness of the field, while simultaneously capturing

the global properties of the field, such as long range dependence. Our hybrid

simulation scheme relies on approximating the kernel g by a power function in

a small neighbourhood of zero, and by a step function away from zero. This

approach allows us to reproduce the explosive behaviour at the origin, while

simultaneously approximating the integrand on a large subset of R2. This idea
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is motivated by the recent work of Bennedsen et al. [8], where the authors pro-

posed an analogous scheme for the simulation of the one-dimensional model of

Brownian semi-stationary processes. As a consequence, the hybrid simulation

scheme preserves the roughness of the random field. The scheme is however

limited to simulate the random field on a regular grid.

It is known that any stationary Gaussian random field with a continuous

and integrable covariance function has a moving average representation of the

form (1.1) with σ constant, cf. Hellmund et al. [24, Proposition 6]. This is

for example satisfied for stationary Gaussian fields with Matérn covariance.

Our assumptions correspond to a Matérn field with smoothness parameter

ν ∈ (0, 1). This rough Matérn model has for example been used by Goff and

Jordan [19] and in the context of turbulence modelling [39]. Recently, Bolin

et al. [12] have developed a scheme for fast and efficient simulation of Gaussian

fields with rough Matérn correlation, extending the SPDE approach developed

by Lindgren et al. [30]. Our simulation scheme contains an alternative way to

simulate such fields as a special case. Introducing random volatility σ gives

rise to a method for constructing and simulating non-Gaussian fields with

Matérn correlation. Such processes have recently been studied by Bolin [11]

and Wallin and Bolin [40].

In a simulation study, we compare the hybrid simulation scheme to other

simulation methods for the model (1.1), namely to what we call the Riemann-

sum scheme, which corresponds to approximating the integrand by a step

function, and to exact simulation using circulant embedding of the covariance

matrix, as described by Dietrich and Newsam [16] and Wood and Chan [41].

The hybrid scheme is not exact, as it approximates the integrand only on

a compact set. However, using circulant embeddings requires the process

to be Gaussian and stationary, which the model (1.1) only satisfies in some

special cases. Moreover, in order to apply exact simulation methods, the

covariance function of X needs to be known, which is oftentimes costly to

compute from the model (1.1). In theory, the asymptotic computational costs
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of the hybrid scheme are slightly higher than for the circulant embedding

method, see Section 3 for details. However, we found in our simulation study

that for a wide range of parameters the hybrid scheme performs in fact faster

than exact simulation, even for large values of n.

This article is structured as follows. In Section 2 we introduce our model in

detail and discuss some of its properties. In Section 3 we describe the hybrid

simulation scheme and derive the asymptotic error of the scheme. Section 4

contains the simulation study comparing the hybrid scheme to other simula-

tion schemes. Proofs for our theoretical results are given in Section 5. The

appendix contains technical details and calculations.

2 Volatility modulated moving average fields

Let (Ω,F ,P) be a probability space, and W white noise on R2. That is, W

is an independently scattered random measure satisfying W (A) ∼ N (0, λ(A))

for all sets A ∈ B0 = {A ∈ B(R2) : λ(A) < ∞}, where λ denotes the

Lebesgue measure. Recall that a collection of real valued random variables

Λ = {Λ(A) : A ∈ B0} is called independently scattered random measure if

for every sequence (An)n∈N of disjoint sets with λ(
⋃
nAn) < ∞, the random

variables Λ(An), n = 1, 2, ... are independent and Λ(
⋃
nAn) =

∑
n Λ(An),

almost surely.

The kernel function g : R2 → R is assumed to be of the form

g(t) = g̃(‖t‖) := ‖t‖αL(‖t‖) (2.2)

for some α ∈ (−1, 0), and a function L : (0,∞)→ (0,∞) that is slowly varying

at 0. Here and in the following ‖ · ‖ always denotes the Euclidean norm on

R2. Recall that L is said to be slowly varying at 0 if for any δ > 0

lim
x→0

L(δx)

L(x)
= 1,
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and that then the function g̃(x) = xαL(x) is called regularly varying at 0

of index α. The explosive behaviour of the kernel at 0 is a crucial feature

of this model, as it governs the roughness of the field. Indeed, under weak

additional assumptions the Hausdorff dimension of a realisation of X is 2− α
with probability 1, see Hansen and Thorarinsdottir [22] and Theorem 2.1,

meaning that for α → −1 the realisations of X become extremely rough. In

Figure 1 we present samples of realisations of VMMAs for different α.

The roughness of realisations poses a challenge for simulating volatility

modulated moving averages. Indeed, possibly the most intuitive way to simu-

late the model (1.1) is by freezing the integrand over small blocks and simulate

the white noise over these blocks as independent centered normal random vari-

ables with variance equaling the block size. However, this method does not

account for the explosive behaviour of g at 0 and therefore does a poor job in

reproducing the roughness of the original process correctly, in particular for

values of α close to −1. We will demonstrate this phenomenon in a simulation

study in Section 4. The hybrid scheme resolves this issue by approximating

g around 0 by a power kernel, and approximating it by a step function away

from 0.

The integral in (1.1) is well defined, when σ is measurable with respect

to B(R2) ⊗ F and the process s 7→ g(t − s)σs(ω) takes almost surely values

in L2(R2). In particular we do not require independence of σ and W or

any notion of filtration or predictability for the definition of the integral, as is

usually used in the theory of stochastic processes indexed by time. This general

theory of stochastic integration dates back to Bichteler [9], see also Kwapień

and Woyczyński [29]. A brief discussion can be found in Appendix A. When

σ and W are independent, we can realise them on a product space and it is

therefore sufficient to define integration with respect to W for deterministic

functions, see for example Rajput and Rosiński [33].

The volatility field (σs)s∈R2 is assumed to satisfy E[σ2
s ] < ∞ for all s.
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Figure 1: Realisations of volatility modulated moving average fields for
different α with Matérn covariance, see Example 2.2. All plots range over
t ∈ [−1, 1]2 and are generated with constant volatility σ. In Section 4 we
present examples of VMMAs with nontrivial volatility.
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Moreover, we assume σ to be covariance stationary, meaning that E[σs] does

not depend on s and cov(σs+r, σs) = cov(σr, σ0) for all s, r ∈ R2. In particular

E[σ2
s ] = E[σ2

0] for all s ∈ R2. For some of our theoretical results we will

assume that σ and W are independent, however we show in Appendix A that

this is not required for the convergence of the hybrid scheme. We make the

assumption that σ is sufficiently smooth such that freezing σ over small blocks

will cause an asymptotically negligible error in the simulation. It turns out

that this is the case when σ satisfies

E[|σ0 − σu|2] = o(‖u‖2α+2), for u→ 0. (2.3)

When σ is independent of the Gaussian noise W , the covariance stationarity

of σ implies that the process X is itself covariance stationary and covariance

isotropic in the sense that E[(Xt+s−Xt)
2] depends only on ‖s‖. If σ is in fact

stationary, X is stationary and isotropic.

Moreover, we pose the following assumptions on our kernel function g.

They ensure in particular that g is square integrable, which together with

covariance stationarity of σ ensures the existence of the integral in (1.1).

(A1) The slowly varying function L is continuously differentiable and bounded

away from 0 on any interval (u,
√

2] for u > 0.

(A2) g̃′ is monotonic on [M,∞) for some constant M, and satisfies g̃′(x) =

O(xβ−1), as x→∞, for some β ∈ (−∞,−1). This implies, in particular,

g̃(x) = O(xβ).

(A3) There is a C > 0 such that |L′(x)| < C(1 + x−1) for all x ∈ (0, 1].

An appealing feature of the VMMA model is its flexibility in modelling

marginal distributions and covariance structure independently. Indeed, as-

suming that σ is stationary and independent of W , the covariance structure

of X is entirely determined by the kernel g, whereas the marginal distribu-

tion of X is a centered Gaussian variance mixture with conditional variance
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∫
R2 g(t−s)2σ2

sds, the distribution of which is governed by the distribution of σ.

A popular model choice for the volatility field σ2 is a moving average process

driven by a subordinator (see Example 2.3). In this case, the marginals of Xt

follow a type G distribution (i.e. a normal mixture distribution with infinitely

divisible conditional variance), and an explicit expression for the characteristic

function has been derived in [38].

The behaviour of the kernel at 0 is determined by the exponent α, whereas

its behaviour away from 0, e.g. how quickly it decays at ∞, depends on the

slowly varying function L. While the behaviour of g at 0 determines local

properties of the process X, like the roughness of realisations, the behaviour

of g away from 0 governs its global properties, e.g., whether it is long range

dependent. Being able to independently choose α and L allows us therefore to

model local and global properties of the VMMA independently, which under-

lines the flexibility of the model. This separation of local and global properties,

and the desire to capture both of them correctly, is one of our main motiva-

tions to use a hybrid simulation scheme. We now formalise the statement that

the roughness of X is determined by the power α.

Theorem 2.1. (i) Assume independence of σ and W . The variogram of X

defined as V (h) := E[(X0 −Xt)
2], where h = ‖t‖, satisfies

h−2−2αL(h)2V (h)→ E[σ2
0]Cα as h→ 0,

where Cα is a positive constant.

(ii) Assume additionally that the volatility is locally bounded in the sense

that it satisfies sup‖s‖≤M+1

{
σ2
s

}
< ∞ almost surely, where M is as in

assumption (A2). Then, for all ε > 0, the process X has a version with

locally α+ 1− ε-Hölder continuous realisations.

The proof can be found in Section 5. Hansen and Thorarinsdottir [22]

analyse the variogram of a closely related model and derive similar results.
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We conclude this section by discussing examples of possible choices for

kernel functions g and volatility fields σ.

Example 2.2 (Matérn covariance). Originally introduced in the context of

tree population modelling in Swedish forests by Matérn [31], the Matérn co-

variance family has become popular in a variety of different fields such as

meteorology, hydrology and machine learning. For an overview we refer to

Guttorp and Gneiting [20] and the references therein. It is characterised by

the correlation function

C(‖r‖) = E[(Xr −X0)2]/E[X2
0 ] =

(λ‖r‖)ν
2ν−1Γ(ν)

Kν(λ‖r‖), r ∈ R2,

where ν > 0 is usually referred to as the shape parameter, while λ > 0 is a scale

parameter. Here, Kν denotes the modified Bessel function of the second kind.

It has been shown by Jónsdóttir et al. [27], see also Hansen and Thorarinsdottir

[22], that the model (1.1) with

g(t) = ‖t‖ ν−1
2 K ν−1

2
(λ‖t‖)

has Matérn correlation, provided σ is independent of W and covariance sta-

tionary. When ν ∈ (0, 1), the function g satisfies our model assumptions

(A1)-(A3) with α = ν − 1, as we argue next. The function

L(x) = x
1−ν
2 K ν−1

2
(λx)

is continuously differentiable on (0,∞). It holds that limx↓0 L(x) = 2−
ν+1
2 Γ
(
ν−1

2

)
,

see [1, Eq. (9.6.9), p.375], which implies that L is slowly varying at 0 and sat-

isfies condition (A3). Condition (A2) is satisfied for any β < −1, as follows

from the identity

d

dx
(xα/2Kα/2(x)) = x

α
2
−1Kα

2
−1(x),
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and the exponential decay of K ν−1
2

(λx), cf. [1, p.378].

Example 2.3 (Ambit fields). In a series of papers Barndorff-Nielsen and

Schmiegel [6, 7] proposed to model velocities of particles in turbulent flows by

a class of spatio-temporal stochastic processes called ambit fields. Over the

last years this model found manifold applications throughout various sciences,

examples being Barndorff-Nielsen et al. [4] and Jensen et al. [26]. The VMMA

model is a purely spatial analogue of an ambit field driven by white noise and

can therefore be interpreted as a realisation of an ambit field at a fixed time

t. In the framework of turbulence modeling, the squared volatility σ2 has the

physical interpretation of local energy dissipation and it has been argued by

Barndorff-Nielsen et al. [5] that it is natural to model σ2 as (exponential of)

an ambit field itself. A specific example that has drawn attention is when σ2

is a moving average process driven by a subordinator, see [38]. In this case,

simulations of σ rely on a shot noise decomposition of the integral, see Rosiński

[34] and Cohen et al. [15].

3 The Hybrid Scheme

In this section we present the hybrid simulation scheme. For r > 0 and

t = (t1, t2) ∈ R2 we introduce the notation � rt for a square with side length

1/r centred at t, that is � rt =
[
t1 − 1

2r , t1 + 1
2r

]
×
[
t2 − 1

2r , t2 + 1
2r

]
. We will

suppress the index r if it is 1, and will denote � r instead of � r0. We simulate

the process Xt for t ∈ [−1, 1]2 on the square grid Γn :=
{

1
n(i, j), i, j ∈

{−n, ..., n}
}

.

A first necessary step for approximating the integral (1.1) is to truncate

the range of integration, i.e.

Xt ≈
∫

� 1/Ct
g(t− s)σsW (ds),

for some large C > 0. To ensure convergence of the simulated process as
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n → ∞, we increase the range of integration simultaneously with increasing

the grid resolution n. We let therefore C = Cn ≈ nγ for some γ > 0. More

precisely, it proves to be convenient to choose Cn = Nn+1/2
n with Nn = [n1+γ ],

where [x] denotes the integer part of x.

An intuitive approach to simulating the model (1.1) is approximating the

integrand on � C−1
n

t by freezing it over squares with side length 1/n, i.e.

XR,n
t =

∑
j∈t+{−Nn,...,Nn}2

g(t− bj/n)σj/n

∫
� nj

W (ds), (3.4)

where bj ∈ � j are evaluation points chosen such that t − bj/n 6= 0 for

all t ∈ Γn and j ∈ Z2. Indeed, XR,n
t can be simulated, assuming that the

volatility σ can be simulated on the square grid
{

1
n(i, j), i, j ∈ Z

}
, since{ ∫

� nj
W (ds)

}
j∈Z2

i.i.d∼ N
(
0, 1

n2

)
. We will refer to this simulation method as

Riemann-sum scheme. Nguyen and Veraart [32] use this technique to simulate

volatility moving averages with bounded moving average kernel and demon-

strate that it performs well in this setting. In our framework, however, a

crucial weakness of this approach is the inaccurate approximation of the ker-

nel function g around its singularity at 0, which results in a poor recovery of

the roughness of X.

This weakness can be overcome by choosing a small κ ∈ N0 (typically, κ ∈
{0, 1, 2}) and approximating g by a power kernel on 1

n [−κ−1/2, κ+1/2]2. More

specifically, denoting Kκ = {−κ, . . . , κ}2 and Kκ = {−Nn, . . . , Nn}2 \Kκ, the

hybrid scheme approximates Xt by

Xn
t :=

∑
j∈Kκ

σt−j/nL(‖bj‖/n)

∫
� n(t−j/n)

‖t− s‖αW (ds)

+
∑
j∈Kκ

σt−j/ng(bj/n)

∫
� n(t−j/n)

W (ds). (3.5)

See Figure 2 for a visualisation. In order to simulate Xt on the grid t ∈ Γn,

we simulate the families of centred Gaussian random variables W1
n and W2

n,
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t+ b(−3,−3)/n

t+ b(−3,−2)/n

t+ b(−3,−1)/n

t+ b(−3,0)/n

t+ b(−3,1)/n

t+ b(−3,2)/n

t+ b(−3,3)/n

t+ b(−2,−3)/n

t+ b(−2,−2)/n

t+ b(−2,−1)/n

t+ b(−2,0)/n

t+ b(−2,1)/n

t+ b(−2,2)/n

t+ b(−2,3)/n

t+ b(−1,−3)/n

t+ b(−1,−2)/n

t+ b(−1,−1)/n

t+ b(−1,0)/n

t+ b(−1,1)/n

t+ b(−1,2)/n

t+ b(−1,3)/n

t+ b(0,−3)/n

t+ b(0,−2)/n

t+ b(0,−1)/n

t+ b(0,0)/n

t+ b(0,1)/n

t+ b(0,2)/n

t+ b(0,3)/n

t+ b(1,−3)/n

t+ b(1,−2)/n

t+ b(1,−1)/n

t+ b(1,0)/n

t+ b(1,1)/n

t+ b(1,2)/n

t+ b(1,3)/n

t+ b(2,−3)/n

t+ b(2,−2)/n

t+ b(2,−1)/n

t+ b(2,0)/n

t+ b(2,1)/n

t+ b(2,2)/n

t+ b(2,3)/n
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n t1 − 2

n t1 − 1
n t1 t1 +

1
n t1 +

2
n t1 +

3
n

t 2
−

3 n
t 2

−
2 n

t 2
−

1 n
t 2

t 2
+

1 n
t 2

+
2 n

t 2
+

3 n

κ = 1

Power kernel
Step function
Kernel singularity

Figure 2: Visualisation of the hybrid scheme. Dividing R2 into small squares
of size 1/n2, the kernel function g is approximated by a power kernel in the
squares close to the singularity, and by a step function further away. The
figure shows the situation for κ = 1, whereas for κ = 0 (κ = 2) the power
kernel is used for only the central square (the central 25 squares). Simulating
the random variables corresponding to the squares shown in the figure corre-
sponds to simulating the process X at (t1, t2) ∈ R2 only. For simulating X
at a different location (t′1, t

′
2) we obtain the same pattern shifted and need to

account for the covariances of the random variables (not shown).
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defined as

W1
n :=

{
Wn

i,j =

∫
�ni/n

‖(i + j)/n− s‖αW (ds), Wn
i =

∫
�ni/n

W (ds),

i ∈ {−n− κ, . . . , n+ κ}2 and j ∈ Kκ

}
,

W2
n :=

{
Wn

i =

∫
�ni/n

W (ds),

i ∈ {−Nn − n, . . . , Nn + n}2 \ {−n− κ, . . . , n+ κ}2
}
.

Indeed, replacing t by i/n in (3.5) yields

Xn
i/n =

∑
j∈Kκ

L(‖bj‖)σ i−j
n
Wn

i−j,j +
∑
j∈Kκ

g(bj/n)σ i−j
n
Wn

i−j

=: X̃(i/n) + X̂(i/n), for i ∈ {−n, . . . , n}2.

By definition the random vectors
{

((Wn
i,j)j∈Kκ ,W

n
i ), i ∈ Z2

}
are independent

and identically distributed along i. As a consequence, W1
n and W2

n are in-

dependent and W2
n is composed of i.i.d. N (0, 1/n2)-distributed random vari-

ables. In order to simulate W1
n we need to compute the covariance matrix of

((Wn
0,j)j∈Kκ ,W

n
0 ), which is of size (|Kκ|+1)2 with |Kκ| = (2κ+1)2. In contrast

to the purely temporal model considered by Bennedsen et al. [8], computing

the covariance structure becomes much more involved in our spatial setting.

It relies partially on explicit expressions derived in Appendix B, and partially

on numeric integration.

Note that the complexity of computing X̃( i
n) for all i ∈ {−n, ..., n}2 is

O(n2), as the number of summands does not increase with n. The sum X̂( i
n)

can be written as the two dimensional discrete convolution of the matrices A

and B defined by

Ak :=


0 k ∈ Kκ

g(bk/n) k ∈ Kκ

, Bk := σk/nW
n
k , for k ∈ {−N−n, ..., N+n}2.
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We remark that this expression as convolution is the main motivation that in

(3.4) and (3.5) we chose to evaluate σ at the midpoints t− j/n of � n(t− j/n).

Using FFT to carry out the convolution leads to a computational complexity

of O(N2 logN) = O(n2+2γ log n) for computing {X̂( i
n)}i∈{−n,...,n}2 . Conse-

quently, the computational complexity of the hybrid scheme is O(n2+2γ log n),

provided the computational complexity of simulating {σi/n}i∈{−N−n,...,N+n}2

does not exceed O(n2+2γ log n). By comparison we recall that the exact simu-

lation of an isotropic Gaussian field using circulant embeddings is of complex-

ity O(n2 log n), see Gneiting et al. [18]. However, exact simulation requires

σ to be constant and the covariance structure to be known. If the field is

instead specified by its kernel function g, the covariance matrix needs to be

computed by numerical integration and the complexity increases to O(n4). A

general Gaussian field with arbitrary covariance function can be simulated by

computing the Cholesky-factorisation of the covariance matrix of Xt realised

on the grid Γn, leading to a complexity of O(n6), see Asmussen and Glynn [3,

p. 312].

Next we derive the asymptotics for the mean square error of the hybrid

simulation scheme.

Theorem 3.1. Let α ∈ (−1, 0). Assume that σ is independent of W and

satisfies (2.3). If γ > −(1 + α)/(1 + β), we have for all t ∈ R2 that

n2(α+1)L(1/n)−2E[|Xt −Xn
t |2]→ E[σ2

0]J(α, κ,b), as n→∞.

Here the constant J(α, κ,b) is defined as

J(α, κ,b) =
∑

j∈Z2\{−κ,...,κ}2

∫
�j

(‖x‖α − ‖bj‖α)2dx,

which is finite for α < 0.

The proof is given in Section 5. This theorem and the computational com-

plexity O(n2+2γ log n) of the hybrid scheme provide guidance how to choose
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the cutoff parameter γ. It should be chosen small under the constraint γ >

−(1 +α)/(1 +β), where β is chosen minimally such that (A2) is satisfied. For

example if X is of Matérn type as in Example 2.2, the function g̃ decays expo-

nentially, and β can be chosen arbitrarily small. In this case the asymptotic

of the mean square error given in the theorem applies for any γ > 0.

The sequence of evaluation points b = (bj)j∈Z2 can be chosen optimally,

such that it minimises the limiting constant J(α, κ,b) and thus the asymptotic

mean square error of the hybrid scheme. To this end bj needs to be chosen in

such a way that it minimises

∫
� j

(‖x‖α − ‖bj‖α)2dx,

for all j ∈ Z2. By standard L2 theory, c ∈ R minimises
∫
� j(‖x‖α − c)2dx if

and only if the function x 7→ ‖x‖α − c is orthogonal to constant functions,

that is, if it satisfies ∫
� j

(‖x‖α − c)dx = 0.

It follows then that J(α, κ,b) becomes minimal if we choose b such that

‖bj‖ =

(∫
� j
‖x‖αdx

)1/α

. (3.6)

In Appendix B, we derive an explicit expression for this integral involving the

Gauß hyperbolic function 2F1. However, in our numerical experiments com-

puting these integrals explicitly for all j ∈ Kκ slowed the hybrid scheme down

considerably, and we recommend choosing the midpoints bj = j instead. Fig-

ure 3 shows the constant J(α, κ,bopt) = Jopt for optimally chosen evaluation

points bopt and the error caused by choosing midpoints bj = j instead, giving

evidence that choosing midpoints leads to a nearly optimal result.

For j ∈ Kκ \ {0}, the evaluation points bj do not appear in the limiting

expression in Theorem 3.1, and we will simply choose the midpoints bj = j.

However, for j = 0 the expression L(‖j‖) is not necessarily defined. Indeed,
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Figure 3: The first figure shows the value of J(α, κ,bopt) = Jopt for different
values of α and κ where the evaluation points bopt are chosen optimally, as
in (3.6). The second figure shows the absolute error J(α, κ,b) − Jopt for b
chosen as midpoints, i.e. bj = j, demonstrating that this choice leads to close
to optimal results.

the slowly varying function L might have a singularity at 0. This shows that

particular attention should be paid to the choice of b0, which is optimal if it

minimises the L2 error of the central cell, i.e.,

b0 = arg min
b∈� n\{0}

E
(∫

� n

g(s)W (ds)− L(‖b‖)
∫

� n

‖s‖αW (ds)

)2

.

By straightforward calculation it can be shown that this is equivalent to

L(‖b0‖) =

(∫
� n

‖s‖2αL(‖s‖)ds
)(∫

� n

‖s‖2αds
)−1

= 8C−1
0,0

∫ 1/
√

2

0
r2α+1L(r/n)

(
π/4− arccos(

√
2r)1{r>1/2}

)
dr,

where C0,0 is defined in Appendix B. The integral on the right hand side

is finite for α > −1, which follows from the Potter bound (5.7), and can be

evaluated numerically.

Before presenting numerical results of the hybrid scheme, let us mention

two possible generalisations. A similar scheme can be implemented for general

kernels g that are not of the form specified in (2.2). In this case, the covariance

matrix of W1
n needs to be computed numerically and does not rely on closed

form expressions as derived in Section B in the appendix. An obvious draw-
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back of this approach, apart from being more computationally involved, is that

for general kernels g the roughness of the random field (1.1) cannot be char-

acterised by a single parameter α, limiting the usefulness of such models for

application. A second possible generalisation is towards higher-dimensional

VMMA processes. However, also in this case the covariance matrix of W1
n

needs to be computed numerically, even for kernels satisfying (2.2). As the

number of covariances to compute is proportional to n2d, where d is the con-

sidered dimension, this would substantially increase the computational costs

of the scheme.

4 Numerical results

In this section we demonstrate in a simulation study that the hybrid scheme

is capable of capturing the roughness of the process correctly, and compare

it in that aspect to other simulation schemes. Before doing so, we present in

Figure 4 samples of VMMAs highlighting the effect of volatility. The volatility

is modelled as σ2
t = exp(X ′t), where X ′ is again a volatility modulated moving

average, compare Example 2.3. For X ′ we choose the roughness parameter

α = −0.2 and the slowly varying function L(x) = e−x. For the first realisation

we chose α = −0.3 and L(x) = e−x. For the second we chose α = −0.7 and L

such that the model has Matérn covariance, see Example 2.2. In both cases it

becomes apparent that areas of lower volatility cause the VMMA field to vary

less.

For our simulation study we first recall the definition of fractal or Hausdorff

dimension. For a set S ⊂ Rd and ε > 0, an ε-cover of S is a countable

collection of balls {Bi}i∈N with diameter |Bi| ≤ ε such that S ⊂ ⋃iBi. The

δ-dimensional Hausdorff measure of S is then defined as

Hδ(S) = lim
ε→0

inf

{ ∞∑
i=1

|Bi|δ : {Bi}i∈N is ε-cover of S

}
,
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Figure 4: Examples for moving average fields modulated by volatility. The
first row shows the volatility (σt)t∈R2 modelled as σ2

t = exp(X ′t), where X ′ is
again a VMMA field. The second and third row show realisations of VMMAs.
On the left hand side the field is simulated with constant volatility, the right
hand side is generated by the same Gaussian noise and with the same model
parameters, but is modulated by (σt)t∈R2 . For the second row we chose α =
−0.3 and the slowly varying function L(x) = e−x. The third row is generated
with α = −0.7 and Matérn covariance.
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and the fractal or Hausdorff dimension of S is

HD(S) := inf{δ > 0 : Hδ(S) = 0}.

The Hausdorff dimension of a spatial stochastic process (Xt)t∈R2 is the (ran-

dom) Hausdorff dimension of its graph HD({(t, Xt), t ∈ R2}), and takes con-

sequently values in [2, 3]. For the model (1.1) with constant volatility σ ≡ 1 it

follows easily from a standard result [2, Theorem 8.4.1] and Theorem 2.1 that

HD(X) = 2−α, see also Hansen and Thorarinsdottir [22]. Gneiting et al. [17]

give an overview over existing methods for estimating the Hausdorff dimen-

sion of both time series data and spatial data, and provide implementations

for various estimators in form of the R package fractaldim [36], which we

rely on.

We estimate the Hausdorff dimension from simulations of X generated by

the hybrid scheme, and compare to estimates from other simulation methods.

We consider the model (1.1) with constant volatility σ and Matérn covariance,

see Example 2.2. In this case the process X can be simulated exactly using cir-

culant embeddings of the covariance matrix, to which we compare. Note that

exact simulation is only available for Gaussian processes with known covari-

ance function and is not applicable for general VMMAs. Moreover we compare

to the Riemann-sum scheme introduced in (3.4). For the hybrid scheme we

consider κ = 0, 1, 2, 3. With each technique we simulate 100 i.i.d. Monte-Carlo

samples of the process (Xt)t∈[−1,1]2 for every α ∈ {−0.8,−0.7, ...,−0.1}. As

grid resolution we chose n = 100 and, for the hybrid scheme and the Riemann-

sum scheme, Nn = [n1+γ ] with γ = 0.3, i.e. Nn = 398. Thereafter we estimate

the roughness of X and average the estimates over the Monte-Carlo samples.

There is a variety of different estimators for fractal dimension of spatial data.

For a detailed overview and asymptotic properties we refer to Gneiting et al.

[17] and the references therein. We apply the square increment estimator νSI

introduced and analysed by Chan and Wood [13, Equation (4.3)] because of



20

its favourable asymptotic properties. Figure 5 shows the results and compares

them to the theoretical value of the Hausdorff dimension 2 − α, plotted as

dashed line. For the second plot in the figure we remark that the sample vari-

ance of the roughness estimates was between 0.005 and 0.01, for all values of

α and all simulation methods.

Exact simulation using circulant embeddings performs slightly better than

the hybrid scheme, in particular when α ≈ 0. This is not surprising, taking

into account that the roughness of the process is governed by the behaviour

of the kernel g at 0, which is well approximated by the hybrid scheme but,

intuitively speaking, perfectly recovered by exact simulation. Let us stress

again that exact simulation using circulant embeddings is only available for

the model (1.1) in a few special cases. For κ ≥ 1 the hybrid simulation scheme

recovers the roughness very precisely, when α < −0.3. When α ≥ −0.3 or

κ = 0 it still performs reasonably well but tends to overestimate the roughness

of the process slightly. This behaviour is likely to be caused by the at 0 slowly

varying function, L(x) = x−α/2Kα/2(x) in the Matérn covariance case, which,

intuitively speaking, varies more at 0 for larger values of α. As expected,

the Riemann-sum approximation underestimates the roughness of the field

significantly, as it does not account for the explosive behaviour of g at 0.

For the exact simulation via circulant embeddings we used the R package

RandomFields [35], and refer to Gneiting et al. [18] for more details on this

simulation method. For the roughness estimation we relied on the R package

fractaldim [36]. Our implementation of the hybrid scheme is in MATLAB

and is available in the online supplement of this article.

In Table 1 we compare computation times for the hybrid scheme, the cir-

culant embeddings method, and the Riemann-sum scheme. For generating

a single realisation, the circulant embedding method and the Riemann-sum

scheme perform faster than the hybrid scheme. The main reason for this,

however, is the costly computation of the covariance of the family W1
n, which
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Figure 5: Roughness estimated from samples generated by the hybrid
scheme, the Riemann-sum approximation method and by exact simulation
using the circulant embedding method for Gaussian fields. The theoretical
roughness is marked as a dashed line. The roughness is estimated by the
isotropic estimator νSI introduced by Chan and Wood [13], averaged over 100
i.i.d. samples. The second plot shows in more detail the deviation between the
estimation and the theoretical value, not including the Riemann-sum approx-
imation scheme.



22

MC samples κ = 0 κ = 1 κ = 2 κ = 3 circ.emb. Riemann-sum

1 12.6 s 13.2 s 14.3 s 15.3 s 0.8 s 1.2 s
100 51 s 61.3 s 72.6 s 77.7 s 75.6 s 32.5 s

Table 1: Computation time of the hybrid scheme for different κ, for exact
simulation using circulant embeddings, and for the Riemann-sum scheme, for
a Matérn covariance Gaussian field. The first row shows the computation time
for a single realisation, the second for 100 i.i.d. samples. The parameters of
the model were chosen as n = 100, α = −0.6, and, for the hybrid and the
Riemann-sum scheme, γ = 0.3. The computation time was measured on a
computer with with 2.9 GHz CPU and 32 GB RAM.

is only required once when generating i.i.d. Monte-Carlo samples, where the

hybrid scheme performs more favourable. In view of the rather long com-

putation times for all algorithms, let us stress that n = 100 corresponds to

simulating X on a fine grid containing (2n+ 1)2 = 40, 401 grid points.

5 Proofs

This section is dedicated to the proofs of our theoretical results. We begin by

recalling the Potter bound which follows from Bingham et al. [10, Theorem

1.5.6]. For any δ > 0 there exists a constant Cδ > 0 such that

L(x)/L(y) ≤ Cδ max

{(
x

y

)δ
,

(
x

y

)−δ}
, x, y ∈ (0, 1]. (5.7)

This bound will play an important role throughout all the proofs in this sec-

tion.

Proof of Theorem 2.1 (i). The proof is similar to the proof of Bennedsen et al.

[8, Proposition 2.1]. We have for h > 0 by covariance stationarity of σ that

V (h) = E[σ2
0]

∫
R2

(
g(s + he)− g(s)

)2
ds,

where e is any unit vector and we used transformation into polar coordinates.
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We obtain

V (h) = E[σ2
0](Ah +A′h), where

Ah =

∫
{‖s‖≤1}

(
g(s + he/2)− g(s− he/2))2ds, and

A′h =

∫
{‖s‖>1}

(
g(s + he/2)− g(s− he/2))2ds.

Since the function g̃ is continuously differentiable on (0,∞), we obtain by the

mean value theorem the following estimate for A′h.

A′h ≤ h2

{∫
{1<‖s‖<M+1}

sup
{ξ : |ξ−‖s‖|≤h/

√
2}

(g̃′(ξ))2 ds

+ 2π

∫ ∞
M

g̃′(r)2rdr

}
,

where we used that |g̃′| is decreasing on [M,∞). The term in curly brackets

is finite by Assumption (A2), and we obtain that A′h = O(h2), as h→ 0. For

Ah we make the substitution x = s/h and obtain

Ah = h2

∫
‖x‖≤1/h

(
g(h(x + e/2))− g(h(x− e/2)))2dx

= h2+2αL2(h)

∫
‖x‖≤1/h

Gh(x)dx,

where

Gh(x) =

(
‖x + e/2‖αL(h‖x + e/2‖)

L(h)
− ‖x− e/2‖αL(h‖x− e/2‖)

L(h)

)2

.

Note that Gh(x) →
(
‖x + e/2‖α − ‖x − e/2‖α

)2
, as h → 0. Moreover, there

is an integrable function G satisfying G(x) ≥ |Gh(x)| for all x, for sufficiently

small h, allowing us to apply the dominated convergence theorem. Indeed,

the existence of G follows since L is bounded away from 0 on (0, 1] and by

Assumption (A3). For details we refer to the proof of [8, Proposition 2.2].

Now, an application of the dominated convergence theorem yields the the
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statement with

Cα := 2π

∫
R2

(
‖x + e/2‖α − ‖x− e/2‖α

)2
dx.

Proof of Theorem 2.1 (ii). The proof relies on the Kolmogorov-Chentsov the-

orem [28, Theorem 3.23], which requires localisation of the process, as σ does

not necessarily have sufficiently high moments. We therefore first show the

existence of a Hölder continuous version under two auxiliary assumption that

will be relaxed thereafter:

(1) σ2
s ≤ m for some m > 0, for all ‖s‖ ≤M + 1 .

(2) For t with ‖t‖ ≤ 1 it holds that

∫
{‖s‖≥M+1}

(g(t− s)− g(−s))2σ2
sds ≤ m‖t‖2.

Here, M denotes the constant introduced in Assumption (A2), and both con-

ditions are assumed to be satisfied pathwise, i.e. with σs = σs(ω) for almost

all ω ∈ Ω.

Under the auxiliary assumptions we have for all p > 0, ‖t‖ ≤ 1 that

E[(Xt −X0)p] ≤ CpE
[(∫

R2

(
g(t− s)− g(−s)

)2
σ2
sds

)p/2]
≤ Cpmp/2

(∫
{‖s‖≤M+1}

(
g(t− s)− g(−s)

)2
ds + ‖t‖2

)p/2
≤ Cpmp/2

(
V0(‖t‖) + ‖t‖2

)p/2
,

where V0 denotes the variogram of the process (Xt)t∈R2 with σ ≡ 1. In the

first inequality we used that σ and W are independent and therefore Xt−X0

has a Gaussian mixture distribution with the integral on the right hand side

being the conditional variance. Applying the first part of the theorem and the

Potter bound (5.7) we obtain for any δ > 0 a constant Cp,m,δ such that for all
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t with ‖t‖ ≤ 1

E[(Xt −X0)p] ≤ Cp,m,δ‖t‖p+pα−δ.

Therefore, the Kolmogorov-Chentsov Theorem [28, Theorem 2.23] implies that

X has a Hölder continuous version of any order γ < 1 + α − δ
p − 2

p . and the

result follows for any γ ∈ (0, 1 + α) by letting p→∞.

Now the proof can be completed by relaxing assumptions (1) and (2) to

the weaker assumption sup‖s‖≤M+1

{
σ2
s

}
< ∞. By the mean value theorem

we obtain that for all t with ‖t‖ ≤ 1

‖t‖−2

∫
{‖s‖≥M+1}

(g(t− s)− g(−s))2σ2
sds

≤ ‖t‖−2

∫
{‖s‖≥M+1}

|‖t− s‖ − ‖s‖|2 sup
r∈[‖s‖,‖t−s‖]

(
g̃′(r)2

)
σ2
sds

≤
∫
{‖s‖≥M+1}

g̃′(‖s‖ − 1)2σ2
sds,

where we used that |g̃′| is decreasing on [M,∞). By taking expectation it

follows from Assumption (A2) that the right hand side is almost surely finite.

Using the assumption from the theorem it follows that the random variable

Z := max

{
sup

‖s‖≤M+1

(
σ2
s

)
, sup
‖t‖≤1

(
‖t‖−2

∫
{‖s‖≥M+1}

(g(t− s)− g(−s))2σ2
sds

)}

is finite, almost surely. The process (Xt1{Z≤m})t∈R2 satisfies the auxiliary

assumptions (1) and (2) and coincides with X on {ω : Z(ω) ≤ m}. Therefore,

the existence of a version of X with α+ 1− ε-Hölder continuous sample paths

follows by letting m→∞.

For the proof of Theorem 3.1 we need the following auxiliary result. The

proof is similar to the proof of Bennedsen et al. [8, Lemma 4.2] and not re-

peated.

Lemma 5.1. Let α ∈ R and j ∈ Z2 \ {(0, 0)}. If bj ∈ � j, it holds that
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(i) lim
n→∞

∫
�j

(
‖x‖αL(‖x‖/n)

L(1/n)
−‖bj‖

L(‖bj‖/n)

L(1/n)

)2

dx =

∫
�j

(‖x‖α−‖b‖α)2dx,

(ii) lim
n→∞

∫
�j
‖x‖2α

(
L(‖x‖/n)

L(1/n)
− L(‖bj‖/n)

L(1/n)

)2

dx = 0.

The same holds for j = (0, 0) if b(0,0) 6= (0, 0) and α > −1.

Proof of Theorem 3.1. Recall the definition

Xn
t :=

∑
j∈Kκ

∫
� n(t−j/n)

‖t− s‖αL(‖bj‖)σt−j/nW (ds)

+
∑
j∈Kκ

∫
� n(t−j/n)

g(bj/n)σt−j/nW (ds).

We introduce the auxiliary object X ′n defined as

X ′t
n

:=
∑

j∈Kκ∪Kκ

σt−j/n

∫
� n(t−j/n)

g(t− s)W (ds)

+

∫
R2\�Nn/nt

g(t− s)σsW (ds).

Denoting En := E[|Xn
t − X ′nt |2] and E′n := E[|Xt − X ′nt |2], Minkowski’s in-

equality yields

En(1−
√
E′n/En)2 ≤ E[|Xn

t −Xt|2] ≤ En(1 +
√
E′n/En)2. (5.8)

We will show later that E′n/En → 0 as n → ∞, and it is thus sufficient to

analyse the asymptotic behaviour of En.
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We have that

En =
∑
j∈Kκ

∫
� n(t−j/n)

(
‖t− s‖αL(‖bj‖/n)− g(t− s)

)2E[σ2
t−j/n]ds

+
∑

j∈{−n,...,n}2\Kκ

∫
� n(t−j/n)

(
g(t− s)− g(bj/n)

)2E[σ2
t−j/n]ds

+
∑

j∈Kκ\{−n,...,n}2

∫
� n(t−j)

(
g(t− s)− g(bj/n)

)2E[σ2
t−j/n]ds

+

∫
R2\� (2Nn+1)/nt

g(t− s)2E[σ2
s ]ds

=E[σ2
0](D1 +D2 +D3 +D4). (5.9)

For D4 we obtain, recalling assumption (A2) and Nn = nγ+1 that

D4 ≤
∫
‖s‖>Nn/n

g(s)2ds = O((Nn/n)2β+2) = O(n2γ(1+β)).

Therefore, we have

n2(1+α)D4 → 0. (5.10)

For D3 we obtain

D3 =
∑

j∈Kκ\{−n,...,n}2

∫
� nj/n

(
g(s)− g(bj/n)

)2
ds.

Recalling the notation g̃(‖s‖) = g(s) we have for s ∈ �j with j ∈ Kκ \
{−n, . . . , n}2 by the mean value theorem ξ ∈ [‖s‖ ∧ ‖bj/n‖, ‖s‖ ∨ ‖bj/n‖].
Since g̃′ is decreasing on [M,∞) by assumption (A2) it follows that

|g(s)− g(bj/n)| = |g̃′(ξ)(‖s‖ − ‖bj‖/n)|

≤


1
n supy∈[1−1/(

√
2n),M+1/(

√
2n)] |g̃′(y)|, (‖j‖ −

√
2)/n < M,

1
n |g̃′((‖j‖ −

√
2)/n)|, (‖j‖ −

√
2)/n ≥M.
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Consequently, we obtain with transformation into polar coordinates

lim sup
n→∞

n2D3 (5.11)

≤
(
π(M + 1)2 sup

z∈[1/2,M+1/2]
|g̃′(z)|+ C

∫ ∞
M

r|g̃′(r)|2dr
)
<∞.

For D1 we have that

D1 =
1

n2

∑
j∈Kκ

∫
�j

(
‖s/n‖αL(‖bj‖/n)− g(s/n)

)2
ds

=
L(1/n)

n2+2α

∑
j∈Kκ

∫
�j
‖s‖2α

(
L(‖bj‖/n)

L(1/n)
− L(‖s‖/n)

L(1/n)

)2

ds.

Since the number of elements of Kκ does not depend on n, we have by Lemma

5.1

lim
n→∞

n2+2αD1

L(1/n)
= 0. (5.12)

The term D2 can be written as

D2 =
1

n2

∑
j∈{−n,...,n}2\Kκ

∫
�j

(
g(s/n)− g(bj/n)

)2
ds

=
L(1/n)2

n2+2α

∑
j∈{−n,...,n}2\Kκ

∫
�j

(
‖s‖αL(‖s‖/n)

L(1/n)
− ‖bj‖α

L(‖bj‖/n)

L(1/n)

)2

ds︸ ︷︷ ︸
:=Aj,n

.

From Lemma 5.1 we know that limn→∞Aj,n =
∫
�j(‖s‖α − ‖bj‖α)2ds. Conse-

quently, if we find a dominating sequence Aj such that Aj ≥ Aj,n for all n and∑
j∈Z2\Kκ Aj <∞, it follows from dominated convergence theorem that

lim
n→∞

D2n
2α+2

L(1/n)2
=

∑
j∈Z2\Kκ

∫
�j

(‖s‖α − ‖bj‖α)2ds, for α ∈ (−1, 0). (5.13)
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It holds that

Aj,n =

∫
�j

{(
‖s‖α − ‖bj‖α

)L(‖s‖/n)

L(1/n)
+ ‖bj‖α

(
L(‖s‖/n)

L(1/n)
− L(‖bj‖/n)

L(1/n)

)}2

ds

≤ 2

∫
�j

(‖s‖α − ‖bj‖α)2

(
L(‖s‖/n)

L(1/n)

)2

ds

+ 2

∫
�j
‖bj‖2α

(
L(‖s‖/n)− L(‖bj‖/n)

L(1/n)

)2

ds

=: Ij,n + I ′j,n.

For I ′j,n we note that ‖bj‖2α ≤ (‖j‖ − 1/
√

2)2α for α < 0. By the mean value

theorem we have a ξ ∈ [‖s‖/n ∧ ‖bj‖/n, ‖s‖/n ∨ ‖bj‖/n] such that

|L(‖s‖/n)−L(‖bj‖/n)| = L′(ξ)|‖s‖/n−‖bj‖/n| ≤
C

n
+

C

‖j‖ − 1/
√

2
≤ 2C

‖j‖ − 1/
√

2
,

where we used (A3) and that ‖j‖ ≤ n. Consequently, we obtain

I ′j,n ≤
C

infx∈(0,1] L(x)
(‖j‖ − 1/

√
2)2α

∫
�j

(L(‖s‖/n)− L(‖bj‖))2ds

≤ C(‖j‖ − 1/
√

2)2(α−1).

For the term Ij,n we obtain by the Potter bound and the mean value theorem

that

Ij,n ≤ Cδ
∫

�j
min(‖s‖, bj)2α−2‖s‖2δds ≤ Cδ(‖j‖ − 1/

√
2)2(α−1+δ),

where we choose δ ∈ (0,−α). Consequently, we obtain Ij,n + I ′j,n ≤ C(‖j‖ −
1/
√

2)−2 for all n > 0, and since

∑
j∈Z2\Kκ

C(‖j‖ − 1/
√

2)−2 <∞,

(5.13) follows from dominated convergence theorem and Lemma 5.1. Now



30

(5.9) together with (5.10), (5.11), (5.12) and (5.13) show that

En ∼ E[σ2
0]J(α, κ,b)n−2(α+1)L(1/n)2, n→∞.

Therefore, recalling (5.8), the proof of statement (i) of the Theorem can be

completed by showing that E′n/En → 0 as n→∞.

Since σ is covariance stationary, we obtain for E′n

E′n =
∑

j∈Kκ∪Kκ

∫
� n(t−j/n)

E[(σt−j/n − σs)2]g(t− s)2ds

≤ sup
u∈� n

E[|σu − σ0|2]

∫
R2

g(s)2ds,

and E′n/En → 0 follows by the assumption (2.3)
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A On general stochastic integrals

We recall the definition of general stochastic integrals of the form
∫
R2 HsW (ds)

where H is a real valued stochastic process, not necessarily independent of W.

The construction of such integrals dates back to Bichteler [9]. In their recent
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paper, Chong and Klüppelberg [14] revisit this theory in a spatio-temporal set-

ting and derive a general integrability criterion for stochastic integrals driven

by a random measure that is easy to check. In the context of integrals of the

form (1.1), this criterion yields the following statement.

Proposition A.1. Let (Hs)s∈R2 be a real valued stochastic process, measurable

with respect to B(R2) ⊗ F , such that H ∈ L2(R2), almost surely. Then, the

stochastic integral
∫
R2 HsW (ds) exists in the sense of Bichteler [9].

Proof. We apply Chong and Klüppelberg [14, Theorem 4.1]. Since this result

is formulated in a spatio-temporal framework, we introduce an artificial time

component and lift the white noiseW (ds) to a space time white noise W̃ (dt; ds)

such that W (A) = W̃ ([0, 1]× A) for all A ∈ B(R2). Equipping (Ω,F ,P) with

the maximal filtration Ft = F for all t ∈ [0, 1], the spatio-temporal process

defined as Hs(t) := Hs for all t ∈ [0, 1] is predictable and it holds that

∫
R2

HsW (ds) =

∫
[0,1]×R2

Hs(t)W̃ (dt; ds)

if the latter exists. The random measure W̃ satisfies the conditions of Chong

and Klüppelberg [14, Theorem 4.1] with characteristics B = µ = ν = 0 and

C(A;B) = λ(A∩B) for all A,B ∈ B([0, 1]×R2), where λ denotes the Lebesgue

measure. The theorem then implies that H is integrable with respect to W if

and only if it satisfies almost surely
∫
R2 H

2
s ds <∞.

Note that the proofs for some of our theoretical results rely on the isometry

E
[(∫

R2

HsW (ds)

)2]
= E

[ ∫
R2

H2
s ds

]
,

which does not necessarily hold when H and W are dependent. In particular,

we cannot rely on Theorem 3.1 in this more general framework, and deriving

the L2-error of the hybrid scheme would require to make additional regularity

assumptions on the integrand. We are content with arguing that the hybrid
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scheme converges also in the dependent case as long as σ is continuous, without

further specifying the asymptotics.

Proposition A.2. Assume that (σs)s∈R2 is covariance stationary and has a

continuous version. Then, Xn
t

P−→ Xt for all t ∈ R2, i.e. the hybrid scheme

converges.

Proof. For ease of notation we assume t = 0. Denote by gn and σn the discrete

approximations to g and σ used in the hybrid scheme, i.e.

gn(s) :=
∑
j∈Kκ

‖s‖αL
(
bj
n

)
1� n j/n(s) +

∑
j∈Kκ

g

(
bj
n

)
1� n j/n(s),

σns :=
∑

k∈Kκ∪Kκ

σt−k/n1� n(t−k/n)(s).

We consider the two discretized approximations for the integral X0

Xn
0 =

∫
R2

gn(−s)σnsW (ds) and X̃n
0 :=

∫
R2

g(−s)σnsW (ds),

where Xn
0 matches the hybrid scheme discretization introduced in Section 3.

The proof takes several steps. First we argue that continuity of σ implies

X̃n
0

P−→ X0. Thereafter we argue that X̃n
0 −Xn

0
P−→ 0. To this end we restrict

the integral to a compact set, arguing that the remainder becomes negligible

when the compactum is chosen sufficiently large. For the integral restricted

to the compactum the convergence then follows by a version of the dominated

convergence theorem for stochastic integrals.

In order to see that X̃n
0

P−→ X0, note that

X0 =

∫
R2

g(−s)σsW (ds) =

∫
R2

σsMg(ds),

where the random measure Mg is defined as Mg(A) =
∫
A g(−s)W (ds). The

sequence σn consists of simple integrands that pointwise converge to σ by
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continuity. By construction of the stochastic integral, this readily implies that

X0 =

∫
R2

σsMg(ds) = lim
n→∞

∫
R2

σnsMg(ds) = lim
n→∞

X̃n
0 , (1.14)

in probability, see [9]. Note that all integrals exist by covariance stationarity

of σ.

Next, we consider for a large constant K the decomposition

X0 = X≥K0 +X<K
0 =:

∫
‖s‖≥K

g(−s)σsW (ds) +

∫
‖s‖<K

g(−s)σsW (ds),

and similarly for Xn
0 and X̃n

0 . We argue that for fixed ε, δ > 0 there is suffi-

ciently large K such that

lim sup
n

P[|X̃n,≥K
0 −Xn,≥K

0 | > δ] < ε. (1.15)

By an application of Cauchy-Schwarz inequality it holds that

E[|Xn,≥K
0 − X̃n,≥K

0 |] (1.16)

≤
∑

‖j‖/n≥K

E
[∣∣∣∣σ−j/n ∫

� nj/n

(
g

(
bj
n

)
− g(s)

)
W (ds)

∣∣∣∣]

≤
∑

‖j‖/n≥K

(E[σ2
−j/n])1/2

√∫
� nj/n

(
g

(
bj
n

)
− g(s)

)2

ds.

An application of the mean value theorem shows that, for ‖j‖/n sufficiently

large, (
g

(
bj
n

)
− g(s)

)2

≤ C

n2
g̃′2(‖j‖/n), for s ∈ � nj/n,

for some constant C. It follows that√∫
� nj/n

(
g

(
bj
n

)
− g(s)

)2

ds ≤ C

n2
g̃′(‖j‖/n).
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Therefore, (1.16) implies, for suitable constants C1 and C2,

E[|Xn,≥K
0 − X̃n,≥K

0 |] ≤ C1

∑
‖j‖/n≥K

g̃′(‖j‖/n)

n2

≤ C2

∫
‖s‖>K

g̃′(‖s‖)ds = 2πC2

∫ ∞
K

g̃′(r)r dr.

By assumption (A2), g′(r)r is integrable and (1.15) follows.

It remains to argue that Xn,<K
0

P−→ X<K
0 . Consider for some C > 0 the

decomposition Ω = ΩC ∪ Ωc
C of the probability space, where

ΩC := {ω : |σs(ω)| < C, for all ‖s‖ < K}.

Since {‖s‖ < K} is compact and σ has continuous paths, it holds that P[Ωc
C ]→

0, as C → ∞. Moreover, gn(−s)σns 1ΩC converges pointwise to g(−s)σs1ΩC ,

where we used continuity of σ, and is uniformly bounded for all s ∈ K and all n.

Consequently it follows from a dominated convergence theorem for stochastic

integrals [14, Theorem 2.3], that Xn,<K
0 1ΩC

P−→ X<K
0 1ΩC . By letting C →∞

it follows that Xn,<K
0

P−→ X<K
0 for fixed K.

Now, combining this convergence with (1.14) and (1.15) shows that for any

δ, ε > 0 we can choose K as in (1.15), and obtain

P[|Xn
0 −X0| > 3δ] ≤ P[|Xn,≥K

0 − X̃n,≥K
0 | > δ] + P[|X̃n,≥K

0 −X≥K0 | > δ]

+ P[|Xn,<K
0 −X<K

0 | > δ] ≤ 3ε,

for sufficiently large n. This shows the claim of the proposition.

B The covariance of W1
n

In this section we analyse the covariance structure of the Gaussian family

W1
n introduced in Section 3. For a wide range of covariances we are able to

derive closed expressions, whereas the remaining covariances are computed by
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numerical integration. Let us remark that, in addition to the symmetry of the

covariance matrix, the isotropy of the process adds 8 more spatial symmetries

(corresponding to the linear transformations in the orthogonal group O(2)

that map the grid Γn onto itself), which reduces the number of necessary

computations drastically. Since the random variables in W1
n are i.i.d. along i,

it is sufficient to derive the covariance matrix for

{
Wn

0,j, W
n
0

}
j∈Kκ .

For j1, j2 ∈ {−κ, . . . , κ}2 it holds that

C1,1 := var(Wn
0 ) =

1

n2
,

C1,j1 := cov(Wn
0 ,W

n
0,j1) =

1

n2+α

∫
�
‖j1 − s‖αds,

Cj1,j2 := cov(Wn
0,j1 ,W

n
0,j2) =

1

n2+2α

∫
�
‖j1 − s‖α‖j2 − s‖αds.

We now derive explicit expressions for Cj,j using the Gauss hypergeomet-

ric function 2F1. Clearly, these expressions can be applied to compute C1,j

by replacing α with α/2. Using symmetries we may assume without loss of

generality that j = (j1, j2) with j1 ≥ j2 ≥ 0. We introduce the notation

� j for the area {(x1, x2) : j2 ≤ x1 ≤ j1, j2 ≤ x2 ≤ x1}, that is a right

triangle with lower right vertex (j1, j2) and hypotenuse lying on the diagonal

{(x1, x2) : x1 = x2}. In order to obtain explicit expressions for Cj,j, we first

derive explicit expressions for

∫
� j
‖x‖2αdx, for all j = (j1, j2) ∈ R2, 0 ≤ j2 < j1. (2.17)

Thereafter we give for all j = (j1, j2) ∈ Z2 with 0 ≤ j2 ≤ j2 an explicit formula

to write Cj,j as linear combination of such integrals.
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Transforming into polar coordinates we obtain that

∫
� j
‖x‖2αdx =

∫ π/4

arctan(j2/j1)

∫ j1/ cos(θ)

j2/ sin(θ)
r2α+1drdθ

=
1

2α+ 2

∫ π/4

arctan(j2/j1)

(
j1

cos(θ)

)2α+2

−
(

j2
sin(θ)

)2α+2

dθ. (2.18)

It holds that arctan(j2/j1) = arccos( j1‖j‖), and consequently we obtain by sub-

stituting cos(θ) = z the following expression for the first summand:

j2α+2
1

2α+ 2

∫ π/4

arctan(j2/j1)
cos(θ)−2α−2dθ

= − j2α+2
1

2α+ 2

∫ cos(π/4)

j1/‖j‖
z−2α−2(1− z2)−1/2dz

=
j2α+2
1

4(α+ 1)

∫ j21/‖j‖2

1/2
z−α−

3
2 (1− z)−1/2dz

=
j2α+2
1

4(α+ 1)

∫ 1/2

j22/‖j‖2
(1− z)−α− 3

2 z−1/2dz

=
j2α+2
1

4(α+ 1)
(B(1/2; 1/2,−α− 1/2)−B(j2

2/‖j‖2; 1/2,−α− 1/2))

=
j2α+2
1

23/2(α+ 1)
2F1(1/2, 3/2 + α; 3/2; 1/2)

− j2α+2
1 j2

2‖j‖(α+ 1)
2F1(1/2, 3/2 + α; 3/2; j2

2/‖j‖2).

Here, B(x; p, q) denotes the incomplete beta function, satisfying B(x; p, q) =

xp

p 2F1(p, 1− q; p+ 1;x). For the first equality we used that d/dz(arccos(z)) =

−(1 − z2)−1/2. For the second summand in (2.18) we argue similarly, using
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that arctan(j2/j1) = arcsin( j2‖j‖),

− j2α+2
2

2α+ 2

∫ π/4

arctan(j2/j1)
sin(θ)−2α−2dθ

= − j2α+2
2

2α+ 2

∫ sin(π/4)

j2/‖j‖
z−2α−2(1− z2)−1/2dz

= − j2α+2
2

4(α+ 1)

∫ 1/2

j22/‖j‖2
z−α−

3
2 (1− z)−1/2dz

= − j2α+2
2

4(α+ 1)

∫ j21/‖j‖2

1/2
(1− z)−α− 3

2 z−1/2dz

= − j2α+2
2

4(α+ 1)
(B(j2

1/‖j‖2; 1/2,−α− 1/2)−B(1/2; 1/2,−α− 1/2))

=
j2α+2
2

23/2(α+ 1)
2F1(1/2, 3/2 + α; 3/2; 1/2)

− j2α+2
2 j1

2‖j‖(α+ 1)
2F1(1/2, 3/2 + α; 3/2; j2

1/‖j‖2).

This leads to

∫
� j
‖x‖2αdx =

j2α+2
2 + j2α+2

1

23/2(α+ 1)
2F1(1/2, 3/2 + α; 3/2; 1/2)

− j1j
2α+2
2

2‖j‖(α+ 1)
2F1(1/2, 3/2 + α; 3/2; j2

1/‖j‖2)

− j2α+2
1 j2

2‖j‖(α+ 1)
2F1(1/2, 3/2 + α; 3/2; j2

2/‖j‖2),

for all 0 ≤ j2 < j1. For implementation we remark that in the case j2 = 0

the hypergeometric function in the second line is not defined since in this case

j2
1/‖j‖2 = 1, and we use

∫
� (j1,0)

‖x‖2αdx =

√
2j2α+2

1

4(α+ 1)
2F1(1/2, 3/2 + α; 3/2; 1/2).

Thus, we have explicit expressions for integrals of the form (2.17) and all

that remains to do is to argue that for 0 ≤ j2 < j1 we can write Cj,j as linear
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combinations of such integrals. By symmetry we obtain that

C(0,0),(0,0) =
1

n2+2α

∫
�
‖x‖2αdx =

8

n2+2α

∫
� (1/2,0)′

‖x‖2αdx.

For j > 0 we obtain

C(j,j),(j,j) =
2

n2+2α

∫
� (j+1/2,j−1/2)

‖x‖2αdx, and

C(j,0),(j,0) =
2

n2+2α

(∫
� (j+1/2,0)

‖x‖2αdx−
∫
� (j−1/2,0)′

‖x‖2αdx

−
∫
� (j+1/2,1/2)

‖x‖2αdx +

∫
� (j−1/2,1/2)

‖x‖2αdx
)
.

For 0 < j2 < j1 we obtain

C(j1,j2),(j1,j2) =
1

n2+2α

(∫
� (j1+1/2,j2−1/2)

‖x‖2αdx−
∫
� (j1−1/2,j2−1/2)

‖x‖2αdx

−
∫
� (j1+1/2,j2+1/2)

‖x‖2αdx +

∫
� (j1−1/2,j2+1/2)

‖x‖2αdx
)
.

This covers all possible choices for 0 ≤ j2 < j1, and consequently we obtain

explicit expressions for Cj,j and Cj,1 for all j.
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[24] Hellmund, G., Prokešová, M., and Jensen, E. B. V. (2008). Lévy-based
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