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Abstract

We introduce a class of hybrid marked point processes, which encompasses and extends continuous-

time Markov chains and Hawkes processes. While this flexible class amalgamates such existing processes,

it also contains novel processes with complex dynamics. These processes are defined implicitly via their

intensity and are endowed with a state process that interacts with past-dependent events. The key

example we entertain is an extension of a Hawkes process, a state-dependent Hawkes process interacting

with its state process. We show the existence and uniqueness of hybrid marked point processes under

general assumptions, extending the results of Massoulié (1998) on interacting point processes.

Keywords: marked point processes; Hawkes processes; stochastic intensity; transition probabilities; Poisson

embedding; strong existence; strong and weak uniqueness.
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1 Introduction

Let N = (N1, . . . , Nd) be a d-dimensional counting process, meaning that Ni(t), i = 1, . . . , d, is the

number of events of type i that have occurred until time t (Brémaud, 1981; Daley and Vere-Jones, 2003;

Last and Brandt, 1995; Sigman, 1995; Jacobsen, 2006). A fundamental concept describing the dynamics of

N is the intensity process λ = (λ1, . . . , λd). Loosely speaking, when it exists, the intensity λi(t) of Ni at

time t is such that

E
[
Ni(t+ dt)−Ni(t) | FNt

]
≈ λi(t)dt,

where FN = (FNt )t≥0 is the natural filtration generated by N . Intuitively, the above equation says that

λi(t)dt is the expected number of events of type i in the infinitesimal time window (t, t+ dt], given what has

happened so far.

Besides describing counting processes, intensity processes can actually be used to specify them implicitly.

A prime example of that is the class of linear Hawkes processes (Hawkes, 1971; Hawkes and Oakes, 1974),
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which are characterised by the intensities

λi(t) = νi +

d∑
j=1

∫
[0,t)

kji(t− s)dNj(s), t ≥ 0, i = 1, . . . , d, (1.1)

where each νi ∈ R>0 is fixed and each kji : R≥0 → R≥0 is a non-negative function, usually called a kernel,

see Laub et al. (2015) for an introduction. This class of processes allows for self-excitation and cross-

excitation effects: the arrival at time t of an event of type j increases the intensity λi(t + h) of events of

type i at time t + h by an amount of kji(h). A Hawkes process is thus a good candidate for a model of

interactions between different types of events. Gaining popularity in the last decade, Hawkes processes have

indeed found applications in many areas including earthquake modelling (Ogata, 1998; Türkyilmaz et al.,

2013; Fox et al., 2016), criminology (Lewis et al., 2012; Mohler, 2013; Loeffler and Flaxman, 2018), social

networks analysis (Blundell et al., 2012; Zhou et al., 2013; Farajtabar et al., 2017), neurology (Chornoboy

et al., 1988; Chevallier et al., 2015; Gerhard et al., 2017) and finance (Bowsher, 2007; Bacry et al., 2015;

Jaisson and Rosenbaum, 2016).

In spite of their success and attractiveness, we notice that these Hawkes-process models account only

for the dynamics of events and ignore the state of the underlying system they may influence. For instance,

when applied to financial markets, Hawkes processes describe the arrival in time of buy and sell orders

(Large, 2007; Bacry et al., 2016; Rambaldi et al., 2017) but capture neither the asset price nor the supply

and demand imbalance, which are impacted by the arriving orders. In fact, Hawkes processes can be

contrasted with models based on continuous-time Markov chains where the focus is instead on a state

process that represents the underlying system (Cont et al., 2010; Cont and de Larrard, 2013; Huang et al.,

2015; Huang and Rosenbaum, 2017). However, because of the Markov property inherent to this second group

of models, the arrival rates depend only on the current state and, thus, interactions like in general Hawkes

processes are not possible. In effect, Hawkes processes and continuous-time Markov chains can have either an

event viewpoint or a state viewpoint, respectively. Note that the dichotomy between Hawkes processes and

Markovian models, and the need for something bridging the two, was already suggested by Bacry et al. (2016,

p. 1190–1191). In a recent paper, Gonzalez and Schervish (2017) make a similar observation and propose a

discrete-time Markov chain to model both the dependence on the most recent event and the current state of

the system.

The original idea that started the present work is to address this gap by endowing the counting process

N with a state process X that is fully coupled to N in the following manner. On the one hand, we wish to

make the intensity dependent on both past events and states by changing (1.1) to

λi(t) = νi +

d∑
j=1

∫
[0,t)

kji(t− s,Xs)dNj(s), t ≥ 0, i = 1, . . . , d,

where the kernels now depend on the state process X. On the other hand, we imagine that each event in N

prompts a state change according to transition probabilities that depend on the type of the event. Naturally,

we call this new process (N,X) a state-dependent Hawkes process. The practical relevance and strong

potential of this new model is demonstrated in Morariu-Patrichi and Pakkanen (2018), where parametric

estimation of the kernels from high-frequency financial data indeed reveals significant state dependence. In

fact, this extension of Hawkes processes opens an avenue to novel models of high-frequency data that feature

both excitation effects and a feedback loop between events and the state of the underlying system.
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The first contribution of this paper is to turn this idea into a class of hybrid marked point processes

that encompasses and extends continuous-time Markov chains and Hawkes processes. To generalise state-

dependent Hawkes processes to hybrid marked point processes, we view the process (N,X) as a single marked

point process on a product mark space and allow the intensity of events to be any measurable functional of

past events and states. These new hybrid marked point processes are actually defined implicitly via their

intensity that takes a specific product form. We prove that the dynamics generated by this product form

completely characterise the class of hybrid marked point processes (Theorem 2.13). Offering an event–state

viewpoint, this new class is well-suited to the joint modelling of events and the time evolution of the state of

a system. While this general and flexible class provides a unifying framework for various existing processes,

it also contains new processes with complex dynamics, as illustrated by state-dependent Hawkes processes.

The second contribution of this paper is to prove the strong existence and uniqueness of non-explosive

state-dependent Hawkes processes and, more generally, hybrid marked point processes. In fact, by dis-

pensing with a Lipschitz condition, we extend the results currently available in the literature for marked

point processes defined via their intensity. It is known that a marked point process whose intensity λ is

expressed in terms of an intensity functional ψ can be formulated as a solution to a Poisson-driven stochastic

differential equation (SDE) (Massoulié, 1998; Brémaud and Massoulié, 1996). However, the existence and

uniqueness results available in these works cannot be applied to hybrid marked point processes because their

intensity functional may fail to satisfy the Lipschitz condition imposed therein. We show that, under certain

integrability or decay conditions, it is enough for ψ to be dominated by either a Hawkes functional or an

increasing function of the total number of past events in order to obtain the existence of a strong solution to

the Poisson-driven SDE (Theorem 2.17) and, in particular, the existence of hybrid marked point processes

(Corollary 2.18). The solution is constructed piece by piece along the time axis in a pathwise manner, taking

advantage of the discrete nature of the driving Poisson random measure. A domination argument is then

used to show non-explosiveness. In the context of multivariate point processes, a similar construction has

already been considered in Çınlar (2011), while a similar domination argument is given in Chevallier (2017).

We combine the two in a more general setting (i.e., general mark space, initial conditions and intensity func-

tional). We are also able to obtain strong and weak uniqueness without any specific assumptions (Theorems

2.20 and 2.21) and, in particular, uniqueness of hybrid marked point processes (Corollary 2.22).

The paper is organised as follows. Section 2 introduces the framework that we use and presents the main

results. Section 3 proves the results concerning the dynamics of hybrid marked point processes. Section 4

proves the existence and uniqueness results. The Appendix gathers technical results concerning the space

N#
R×M of boundedly finite integer-valued measures and the enumeration representation of marked point

processes.

2 Framework and main results

2.1 A framework for point processes

In the following, U refers to a complete separable metric space and we denote by B(U) its Borel σ-algebra.

We reserve the notation M for a complete separable metric space that represents the set of marks in the

context of marked point processes. For most definitions, we follow closely Daley and Vere-Jones (2008) along

with Brémaud (1981). The former reference will be especially used to introduce (marked) point processes

while the latter is essential when defining the intensity process.
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2.1.1 Spaces of integer-valued measures. Let ξ be a Borel measure on U . We say that ξ is boundedly

finite if ξ(A) < ∞ for every bounded Borel set A ∈ B(U). We denote by N∞U the space of Borel measures

on U with values in N ∪ {∞}. We denote by N#
U the set of all ξ ∈ N∞U such that ξ is boundedly finite. We

denote by N#g
R×M the set of all ξ ∈ N#

R×M such that their ground measure ξg(·) := ξ(· ×M ) satisfies:

(i) ξg ∈ N#
R ;

(ii) ξg({t}) = 0 or 1 for all t ∈ R (we say that the ground measure is simple).

Observe that N#g
R×M ⊂ N#

R×M ⊂ N∞R×M . The space N∞R×M corresponds to the realisations of potentially

explosive point processes, while the space N#
R×M corresponds to the realisations of non-explosive point

processes and contains all the realisations of potentially explosive marked point processes. Regarding the

space N#g
R×M , each ξ ∈ N#g

R×M is a realisation of a non-explosive marked point process. When ξ({(t,m)}) = 1

for some t ∈ R and m ∈M , this should be interpreted as an event happening at time t with characteristics m.

The boundedly finite property of the ground measure ensures that, in any finite amount of time, only finitely

many events can occur (i.e., the marked point point process is non-explosive). The simpleness constraint on

the ground measure means that there cannot be two events at the same time.

The so-called w#-distance d# (“weak-hash”) introduced by Daley and Vere-Jones (2003, p. 403), makes

N#
U a complete separable metric space, see Theorem A2.6.III in Daley and Vere-Jones (2003, p. 404). The

corresponding σ-algebra B(N#
U ) coincides with the one generated by all mappings ξ 7→ ξ(A), ξ ∈ N#

U ,

A ∈ B(U). Proposition A2.6.II of Daley and Vere-Jones (2003, p. 403) characterises convergence in this

topology, called the w#-topology. These properties of the space N#
U play an important role in this work.

Note that Morariu-Patrichi (2018) clarifies the proofs of Proposition A2.6.II and Theorem A2.6.III of Daley

and Vere-Jones (2003). Indeed, the original proofs assume a certain function to be monotonic. As this does

not seem to actually hold, Morariu-Patrichi (2018) proposes alternative arguments where required. Besides,

in the Appendix, we show that N#g
R×M is indeed a Borel set of N#

R×M , see Lemma A.1.1.

Finally, for any u ∈ U , we denote by δu the Dirac measure at u.

2.1.2 Non-explosive marked point processes. In the following, the notation (Ω,F ,P) refers to a

probability space. For any σ-algebra S, the trace of A ∈ S on S is defined by A ∩ S := {A ∩ S : S ∈ S}.

Definition 2.1 (Non-explosive point process). A non-explosive point process on U is a measurable mapping

from (Ω,F) into (N#
U ,B(N#

U )).

Definition 2.2 (Non-explosive marked point process). A non-explosive marked point process N on R×M

is a non-explosive point process N on R×M such that N(ω) ∈ N#g
R×M for all ω ∈ Ω.

Remark 2.3. By applying Lemma 1.6 in Kallenberg (2002, p. 4), we obtain that B(N#g
R×M ) = N#g

R×M ∩
B(N#

R×M ), where N#g
R×M is also equipped with the w#-metric d#. This implies that Definition 2.2 is

equivalent to saying that a non-explosive marked point process is a measurable mapping from (Ω,F) into

(N#g
R×M ,B(N#g

R×M )).

Next, a non-explosive point process induces a probability measure on N#
U .

Definition 2.4 (Induced probability). Let N be a non-explosive point process on U . We define the induced

probability measure PN on the measurable space (N#
U ,B(N#

U )) through the relation

PN (A) := P
(
N−1(A)

)
, A ∈ B(N#

U ).
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2.1.3 Enumeration representation. It is common to define instead marked point processes on R≥0×M

as a sequence (Tn,Mn)n∈N of random variables in (0,∞]×M such that (Tn)n∈N is non-decreasing and Tn <∞
implies Tn < Tn+1 (Jacod, 1975; Brémaud, 1981). We will call such a sequence an enumeration. Here, Tn

is to be interpreted as the time when the nth event occurs while Mn describes the characteristics of that

event. Moreover, Tn < ∞ with Tn+1 = ∞ means that there are no more events after time Tn. Note that

this definition allows for explosion in the sense that limn→∞ Tn < ∞ is possible with positive probability.

This is why we stress the non-explosive character of marked point processes in Definition 2.2. There is a

one-to-one correspondence between non-explosive marked point processes on R≥0 ×M and enumerations

such that limn→∞ Tn =∞ a.s. We give a proof of this correspondence in Appendix A.3 for completeness.

2.1.4 Poisson processes. Let ν be a boundedly finite measure on (U ,B(U)). We say that a non-explosive

point process N on U is a Poisson process on U with parameter measure ν if N(A1), . . . , N(An) are mutually

independent for all disjoint and bounded sets A1, . . . , An ∈ B(U), n ∈ N, and N(A) follows a Poisson

distribution with parameter ν(A) for all bounded sets A ∈ B(U). Their existence can be verified using

Theorem 9.2.X in Daley and Vere-Jones (2008, p. 30), see Example 9.2(b) on p. 31 therein.

2.1.5 Pathwise integration. Let N be a non-explosive point process on U . Let H : Ω × U → R≥0 be

an F ⊗B(U)-measurable non-negative mapping. In particular, H, identified henceforth with (H(·, u))u∈U , is

an R≥0-valued stochastic process on U . One can define the integral of H against N in a pathwise fashion as

I(ω) :=

∫
U
H(ω, u)N(ω, du), ω ∈ Ω.

Besides, by a monotone class argument, one can check that ω 7→ I(ω) is F-measurable. In the special case

where N is actually a non-explosive marked point process on R≥0 ×M , the integral can be rewritten as∫∫
R≥0×M

H(t,m)N(dt, dm) =
∑
n∈N

H(Tn,Mn)1{Tn<∞}, a.s.,

where (Tn,Mn)n∈N is the enumeration corresponding to N . For any ξ ∈ N#g
R×M and any τ ∈ R such that

ξ({τ}×M ) > 0, we abuse the notation and define
∫∫
{τ}×M mξ(dt, dm) as the unique element m ∈M such

that ξ({τ} × {m}) = 1.

2.1.6 Shifts, restrictions, histories and predictability. For all t ∈ R, define the shift operator

θt : N#
R×U → N

#
R×U by θtξ(A) := ξ(A+ t), A ∈ B(R× U), where A+ t := {(s+ t, u) ∈ R× U : (s, u) ∈ A}.

Then, for any non-explosive point process N on R × U , define θtN through (θtN)(ω) := θt(N(ω)), ω ∈ Ω.

It will be useful to show that θtξ is jointly continuous in t and ξ (Lemma A.2.1).

Denote the restriction to the negative real line of any realisation ξ ∈ N#
R×U by ξ<0, which is defined

by ξ<0(A) := ξ(A ∩ R<0 × U), A ∈ B(R × U). We can then define the restriction to the negative real

line of any non-explosive point process N on R × U by N<0(ω) := (N(ω))<0, ω ∈ Ω. Similarly, define the

notations ξ≤0(A) := ξ(A ∩ R≤0 × U), N≤0(ω) := N(ω)≤0, ξ≥0(A) := ξ(A ∩ R≥0 × U), N≥0(ω) := N(ω)≥0,

ξ>0(A) := ξ(A ∩ R>0 × U) and N>0(ω) := N(ω)>0.

These notations will allow us to refer to the internal history of N . For instance, for any t ∈ R, (θtN)<0

contains the history of the process up to time t, excluding time t. To lighten these notations, we will use

the conventions θtξ
<0 := (θtξ)

<0, θtξ
≤0 := (θtξ)

≤0, θtξ
>0 := (θtξ)

>0 and θtξ
≥0 := (θtξ)

≥0. It will be useful
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to note that these restriction mappings are measurable (Lemma A.2.2) and that θtξ
<0 is left-continuous as

a function of t ∈ R (Lemma A.2.3).

Let N be a non-explosive point process on R × U . We can define the filtration FN = (FNt )t∈R that

corresponds to the internal history of N by

FNt := σ {N(A× U) : A ∈ B(R), A ⊂ (−∞, t], U ∈ B(U)} for all t ∈ R.

Using Lemma 1.4 in Kallenberg (2002, p. 4) along with the characterisation of B(N#
R×U ) given in Theorem

A2.6.III in Daley and Vere-Jones (2003, p. 404), one can check that FNt = σ(θtN
≤0).

In the following, we call a history any filtration that contains the internal history of N , that is any

filtration F = (Ft)t∈R such that FNt ⊂ Ft, t ∈ R. Equivalently, one says that N is F-adapted. The notation

F = (Ft)t∈R will always be used to refer to a history. We also need to define the predictable σ-algebra Fp

on Ω× R× U corresponding to a history F. The σ-algebra Fp is the one which is generated by all the sets

of the form

A× (s, t]× U, s, t ∈ R, s < t, U ∈ B(U), A ∈ Fs.

Any mapping H : Ω × R × U → R that is Fp-measurable is called an F-predictable process. Any mapping

H : Ω × R>0 × U → R that is (Ω × R>0 × U) ∩ Fp-measurable is also called an F-predictable process.

Given an F-stopping time τ , the strict past Fτ− is defined as the σ-algebra generated by the all the classes

{t < τ} ∩ Ft, t ∈ R.

2.1.7 Intensity process and functional. We equip the mark space (M ,B(M )) with a reference measure

µM , allowing us to define the concept of intensity rigorously. Let N be a marked point process on R×M and

F = (Ft)t∈R a history. Let λ : Ω×R>0×M → R≥0 be a non-negative F-predictable process. We say that λ is

the F-intensity of N relative to µM if for every non-negative F-predictable process H : Ω×R>0×M → R≥0,

E
[∫∫

R>0×M

H(t,m)N(dt, dm)

]
= E

[∫∫
R>0×M

H(t,m)λ(t,m)µM (dm)dt

]
. (2.1)

Note that if an intensity exists, it is then unique up to P(dω)µM (dm)dt-null sets thanks to the predictability

requirement, see Brémaud (1981, Section II.4) and Daley and Vere-Jones (2008, p. 391). In this paper, we

will be particularly interested in intensities that are expressed in terms of a functional applied to the point

process.

Definition 2.5 (Intensity functional). Let ψ : M ×N#
R×M → R≥0 ∪ {∞} be a measurable functional. We

say that a non-explosive marked point process N : Ω → N#g
R×M admits ψ as its intensity functional if N

admits an FN -intensity λ : Ω× R>0 ×M → R≥0 relative to µM such that

λ(ω, t,m) = ψ(m | θtN(ω)<0), P(dω)dtµM (dm)-a.e. (2.2)

2.1.8 Initial condition. Let (Ω≤0,F≤0,P≤0) be a given probability space and N≤0 be a given marked

point process on R×M such that N≤0(ω≤0)≤0 = N≤0(ω≤0) for all ω≤0 ∈ Ω≤0 (i.e., there are no events on

R>0). We will reserve the notation N≤0 to refer to an initial condition.

Let (Ω>0,F>0,P>0) be another probability space that will correspond to the driving Poisson process

in the SDE introduced in Subsection 2.3 below. In the context of strong existence, we will work with

6



HYBRID MARKED POINT PROCESSES: CHARACTERISATION, EXISTENCE AND UNIQUENESS

the probability space (Ω,F ,P) which we define as the completion (Kallenberg, 2002, p. 13) of the product

probability space given by

Ω := Ω≤0 × Ω>0, F̃ := F≤0 ⊗F>0, P̃ := P≤0 × P>0. (2.3)

Such a structure of the probability space is motivated by the fact that the driving noise and the initial

condition are independent.

Definition 2.6 (Strong initial condition). Let N : Ω → N#g
R×M be a non-explosive marked point process

on R ×M . We say that N satisfies a strong initial condition N≤0 if N(ω)≤0 = N≤0(ω≤0) a.s., where

ω = (ω≤0, ω>0) ∈ Ω.

In the context of weak uniqueness, one needs a another concept of initial condition. Let (Ω′,F ′,P′) be

another probability space potentially different from (Ω,F ,P).

Definition 2.7 (Weak initial condition). Let N ′ : Ω′ → N#g
R×M be a non-explosive marked point process on

R ×M . We say that N ′ satisfies a weak initial condition N≤0 if the induced probability PN ′≤0

coincides

with PN≤0 .

2.2 Hybrid marked point processes: an event–state viewpoint

2.2.1 Mark space and state process. Let (E ,B(E ), µE ) and (X ,B(X ), µX ) be two measure spaces

where both E and X are complete separable metric spaces and both µE and µX are a boundedly finite Borel

measures. Each e ∈ E represents a type of event and we call E the event space. Each x ∈ X represents

a possible state of a system and we call X the state space. Motivated by the need to jointly model events

and the state of the system (see Introduction), we consider a mark space (M ,B(M ), µM ) of the form

M := E ×X , B(M ) = B(E )⊗ B(X ), µM := µE × µX . (2.4)

Such a decomposition of the mark space admits the following interpretation. Let ξ ∈ N#g
R×M be a realisation

of a marked point process on R ×M . A point t ∈ R and a point m = (e, x) ∈M such that ξ({t,m}) = 1

can now be interpreted as an event of type e occurring at time t and moving the state of the system to x.

To formalise this viewpoint, we define the state functional and the state process as follows.

Definition 2.8 (State functional and state process). We define the measurable state functional

F : N#
R×M →X by

F (ξ) :=


∫∫
{κ(ξ)}×M xξ(dt, de, dx), if ξ ∈ N#g

R×M and κ(ξ) > −∞,

x0, otherwise,

where κ(ξ) := inf{t < 0 : ξ((t, 0)×M ) = 0} and x0 ∈X is an arbitrary initial state. Given a non-explosive

marked point process N on M , we define the state process (Xt)t∈R by

Xt := F (θtN
<0), t ∈ R.

Note that κ(θtN
<0) is the time of the last event up to time t and, thus, Xt is the coordinate x ∈ X of

the mark m = (e, x) ∈ M of the most recent event. As a consequence, we indeed have that a point t ∈ R
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and a point m = (e, x) ∈M such that N({t,m}) = 1 can be interpreted as an event of type e occurring at

time t and moving the state of the system to x. With this viewpoint, a marked point process on R ×M

allows to jointly model the evolution of a system with state process (Xt)t∈R in X and the arrival in time of

the event types E . To check that the state functional F is indeed measurable, one can adapt the proof of

Lemma A.3.2 in the Appendix.

2.2.2 Implicit definition through the intensity, implied dynamics and characterisation. We

can now introduce the class of hybrid marked point processes, which provides a unified treatment of various

types of processes, including continuous-time Markov chains and Hawkes processes, whence the qualifier

hybrid. Moreover, this class contains new types of processes, such as state-dependent Hawkes processes

(Example 2.15 below), which are applicable to the joint modelling of events and systems. This class is

specified implicitly through a specific form of the intensity. We were inspired by Cartea et al. (2018, p. 13)

who, in the context of a continuous-time Markov chain model, propose a decomposition of the intensity that

is similar in spirit. We should also mention the connection to the decomposition of the rate kernel α of a

continuous-time Markov chain into a rate function c and transition kernel µ (i.e., α = µc), see Kallenberg

(2002, p. 238-239), even though this is slightly different as c is the total intensity and does not depend on

the event variable e ∈ E .

Definition 2.9 (Hybrid marked point processes). Let φ : X × E × X → R≥0 be a measurable non-

negative function such that φ(· | e, x) is a probability density over (X ,B(X ), µX ) for all e ∈ E , x ∈ X .

Let η : E ×N#
R×M → R≥0 ∪ {∞} be a measurable non-negative functional. Define the measurable intensity

functional ψ : M × N#
R×M → R≥0 ∪ {∞} by ψ(m | ξ) := φ(x | e, F (ξ))η(e | ξ) for all m = (e, x) ∈ M ,

ξ ∈ N#
R×M . A hybrid marked point process with transition function φ and event functional η is a non-

explosive marked point process N : Ω → N#g
R×M that admits ψ as its intensity functional. In other words,

N admits an FN -intensity λ : Ω× R>0 ×M → R≥0 relative to µM that satisfies

λ(ω, t, e, x) = φ(x | e,Xt(ω))η(e | θtN(ω)<0), P(dω)dtµM (de, dx)-a.e. (2.5)

To demonstrate the generality and flexibility of hybrid marked point processes, we give three examples of

well-known processes that belong to the class. While at first these examples might be understood only at an

intuitive level, the reader should become fully convinced of their validity once Theorem 2.13 is introduced.

Example 2.10 (Compound Poisson process). Let E = {0} (i.e., just one type of event), µE = δ0, X = R,

µX (dx) = dx (i.e., the Lebesgue measure) and suppose that f : R→ R≥0 is a probability density function.

Consider a hybrid marked point process N with constant event functional η ≡ ν ∈ R>0 and transition

function given by φ(x′ |x) = f(x′ − x), x′, x ∈ R. Then, the FN -intensity of N satisfies λ(t, x) = f(x−Xt)ν

and the state process (Xt)t∈R≥0
is a compound Poisson process with rate ν and jump size distribution f(x)dx.

Example 2.11 (Pure jump Markov process). Let E , µE , X and µX be as in Example 2.10. Suppose that

a hybrid marked point process N has event functional of the form η(ξ) = c(F (ξ)), ξ ∈ N#
R2 , where c is a

positive function. The FN -intensity of N is then given by λ(t, x) = φ(x |Xt)c(Xt) and the state process

(Xt)t∈R≥0
is a pure jump Markov process with rate function c and transition kernel µ(x,B) =

∫
B
φ(y |x)dy,

x ∈ R, B ∈ B(R).

Example 2.12 (Multivariate Hawkes process). Let E = {1, . . . , d}, d ∈ N, µE =
∑d
n=1 δn, X = {0} (i.e.,

only one possible state), µX = δ0, ν = (ν1, . . . , νd) ∈ Rd>0 and k : R>0 × E 2 → R≥0. Consider a hybrid

8
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marked point process N with event functional

η(e | ξ) = νe +

∫∫
(−∞,0)×E

k(−t′, e′, e)ξ(dt′, de′), e = 1, . . . , d, ξ ∈ N#
R×E ,

and note that the transition function must satisfy φ ≡ 1. Then N is a multivariate Hawkes process with

base rate ν and kernel k.

Let us next explain the dynamics that the intensity (2.5) implies. If one integrates out the state variable

x by using the fact that φ(· | e,Xt) is a probability density, one can see that the FN -intensity of the marked

point process N(· ×X ) on R× E is exactly η(e | θtN<0). In other words, η(e | θtN<0) is the intensity of the

aggregation of events of type e (irrespectively of how they impact the state process Xt). Then, η(e | θtN<0)

is distributed in the state space X according to φ(x | e,Xt), specifying the intensity of events with mark

(e, x). This suggests that φ(· | e,Xt) is the probability density of the next state of the system given that the

next event is of type e and that the current state is Xt. This intuition is confirmed by Theorem 2.13, which

actually goes further and states that these dynamics characterise hybrid marked point processes. The proof

is presented in Subsection 3.2.

Theorem 2.13 (Implied dynamics and characterisation). Let φ and η be as in Definition 2.9. Moreover,

suppose that N is a non-explosive marked point process on R×M with an FN -intensity relative to µM , where

M = E ×X . Then, N is a hybrid marked point process with transition function φ and event functional η

if and only if the following two statements hold.

(i) NE (·) := N(· ×X ) is a non-explosive marked point process on R × E that admits an FN -intensity

λE : Ω×R>0×E → R≥0 relative to µE such that λE (ω, t, e) = η(e | θtN(ω)<0) holds P(dω)dtµE (de)-a.e.

(ii) Let t ∈ R≥0 and define the stopping time τt := sup{u > t : N((t, u) ×M ) = 0} and the random

elements (E,X) :=
∫∫
{τt}×M (e, x)N(du, de, dx) such that τt is the time of the first event after time t

and (E,X) is the corresponding mark. We have that

P
(
X ∈ dx |σ(E) ∨ FNτt−

)
1{τt<∞} = φ(x |E,Xt)µX (dx)1{τt<∞}, a.s. (2.6)

Remark 2.14. As shown in the proof of Theorem 2.13, Equation (2.6) implies that

P
(
X ∈ dx |σ(E) ∨ FNt , {τt <∞}

)
= φ(x |E,Xt)µX (dx) a.s.

We now add a fourth example to show that Definition 2.9 contains also new types of processes. This

example extends Hawkes processes to what could be called state-dependent Hawkes processes. Together, the

four examples demonstrate that hybrid marked point processes provide a common framework to construct

and analyse various types of processes.

Example 2.15 (State-dependent Hawkes process). Consider hybrid marked point processes with event

functionals η of the form

η(e | ξ) = ν(e) +

∫∫
(−∞,0)×M

k(−t′,m′, e)ξ(dt′, dm′), e ∈ E , ξ ∈ N#
R×M , (2.7)

where ν : E → R≥0 and k : R×M × E → R≥0 are non-negative measurable functions. We show that such

functionals are indeed measurable (Proposition A.4.1). By Theorem 2.13, this gives rise to a marked point

9
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process NE with marks in E and intensity η that interacts with a state process (Xt)t∈R on X with transition

probabilities φ. On the one hand, events in NE occur like in a Hawkes process except that now the kernel

depends also on the state process. For example, an event of type e′ ∈ E might precipitate an event of type

e ∈ E only if it moves the system to some specific state x0 ∈ X , i.e., k(·, e′, x′, e) ≡ 0 as soon as x′ 6= x0.

On the other hand, the occurence of an event in NE prompts a state change according to the transition

probabilities φ. Consequently, such a marked point process defines a state-dependent Hawkes process where

the state process is fully coupled with the Hawkes process. Viewing NE and (Xt)t∈R as one single marked

point process N on E × X with intensity φη will allow us to prove the existence of such dynamics, see

Corollary 2.18 and Example 2.19. Finally, we can also consider a state-dependent extension of non-linear

Hawkes processes akin to Brémaud and Massoulié (1996), characterised by event functionals η of the form

η(e | ξ) = g

(
e,

∫∫
(−∞,0)×M

k(−t′,m′, e)ξ(dt′, dm′)
)
, e ∈ E , ξ ∈ N#

R×M , (2.8)

where g : E ×R→ R≥0 is a non-negative measurable function, while k : R×M × E → R is measurable, but

need not be non-negative, allowing past events to inhibit new events. The measurability of the functional

(2.8) follows readily from the proof of Proposition A.4.1.

The subclass of hybrid marked point processes characterised by (2.7) extends the regime-switching model

of Vinkovskaya (2014), where the state process triggering the regime switches is not modelled. Besides, since

here the events drive the dynamics of the state process, this subclass is different from the Markov-modulated

Hawkes processes considered by Cohen and Elliott (2013) or Swishchuk (2017), where the state process is

a continuous-time Markov chain that jumps independently of the events. Moreover, the intensity in Cohen

and Elliott (2013) depends only on the current state whereas, here and in Swishchuk (2017), it may depend

on all past states.

2.3 Existence and uniqueness of hybrid marked point processes

In this subsection, M is not required to be a product space as in Subsection 2.2 but can be again an

arbitrary complete separable metric space.

2.3.1 The existence and uniqueness problem. A hybrid marked point processes (Definition 2.9) is

defined implicitly via its intensity process, which, in turn, depends on the history of the hybrid marked

point process. Due to the self-referential nature of the definition, it is not clear a priori that such a marked

point process exists. More generally, given an initial condition N≤0 (see Subsection 2.1.8) and a measurable

intensity functional ψ : M ×N#
R×M → R≥0∪{∞}, one can ask if there exists a unique non-explosive marked

point process N that satisfies the initial condition N≤0 on R≤0 and admits ψ as its intensity functional on

R>0.

Massoulié (1998) tackles this question by reformulating the existence problem as a Poisson-driven SDE,

extending the works of Brémaud and Massoulié (1996), Grigelionis (1971) and Kerstan (1964). Delattre et al.

(2016) also employ this Poisson embedding technique in the context of Hawkes processes on infinite directed

graphs. However, in these papers, strong existence and uniqueness is obtained by imposing a Lipschitz

condition on the intensity functional ψ. More precisely, it is assumed that there exists a non-negative kernel

k : R>0 ×M ×M → R≥0 such that

|ψ(m | ξ)− ψ(m | ξ′)| ≤
∫∫

R<0×M

k(−t′,m′,m)|ξ − ξ′|(dt′, dm′), m ∈M , ξ, ξ′ ∈ N#
R×M . (2.9)

10
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Unfortunately, this condition is too restrictive in the context of hybrid marked point processes. A simple, yet

natural, example of a hybrid marked point process not satisfying (2.9) is given in Subsection 4.1.1. Hence, our

goal is to construct a strong solution to a Poisson-driven SDE without imposing the Lipschitz condition (2.9)

on the intensity functional ψ. We will in fact extend the existence result in Massoulié (1998) by imposing

only a weaker sublinearity condition on ψ. The idea to define a random measure as a strong solution to an

SDE driven by another random measure was also studied by Jacod (1979). Similarly, a Lipschitz condition

that does not seem to apply to Hawkes processes and hybrid marked point processes is required (Jacod,

1979, Chapter 14, Section 1).

Let us also briefly review some weak existence and uniqueness results. Jacod (1975) proved that there

exists a unique probability measure on the canonical space of marked point processes such that the canonical

marked point process admits a given compensator. However, this marked point process may be explosive

a priori. Still, we will apply this result in the proof of Theorem 2.21 below to obtain weak uniqueness. A

similar approach is followed by Jacobsen (2006, Proposition 4.3.5, Corollary 4.4.4) who, furthermore, gives

a domination condition on the intensity functional ensuring that the corresponding marked point process

is non-explosive. Proposition 4.15 will be the counterpart of this result in the strong setting. These weak

existence results are however limited to intensities with respect to the internal history FN . The advantage of

the strong setting is that the results of Massoulié (1998) and the pathwise construction of this paper also hold

when the intensity functional depends additionally on an auxiliary process, meaning that intensities with

respect to larger filtrations can be considered. Besides, the Poisson-driven SDE representation of marked

point processes considered in the strong setting directly suggests a simulation (thinning) algorithm. In fact,

the Poisson embedding lemma (Lemma 4.6 below), which is a stepping stone to the strong setting, was first

given in the simulation literature (Lewis and Shedler, 1976; Ogata, 1981).

Finally, there is a third approach to obtain existence, based on a change of measure, see Brémaud (1981,

Theorem 11, p. 242) and Sokol and Hansen (2015). While this technique also accommodates filtrations that

are larger than the internal history, existence is generally obtained only on finite time intervals.

2.3.2 The Poisson-driven SDE. Let (Ω>0,F>0,P>0) be given and let M>0 : Ω>0 → N#
R×M×R be

a Poisson process on R ×M × R with mean measure dtµM (dm)dz. As usual, denote by (FM>0

t )t∈R the

internal history of M>0 on Ω>0. In this Subsection, we work under the assumption that the underlying

probability space (Ω,F ,P) is the completion of the product probability space defined by (2.3). In particular,

Ω := Ω≤0×Ω>0, where Ω≤0 corresponds to the probability space of an initial condition N≤0, see Subsection

2.1.8. We extend M>0 to a mapping M : Ω→ N#
R×M×R by simply setting

M(ω) := M>0(ω>0), ω = (ω≤0, ω>0) ∈ Ω. (2.10)

Let F = (Ft)t∈R be the filtration on Ω such that, for all t ∈ R, Ft is the P-completion of FN≤0

t ⊗ FM>0

t in

F . In particular, the filtration F is complete (Kallenberg, 2002, p. 123). Similarly to Massoulié (1998), we

want to solve the following Poisson-driven SDE.

Definition 2.16 (The Poisson-driven SDE). Let ψ : M × N#
R×M → R≥0 ∪ {∞} be a given measurable

functional. By a solution to the Poisson-driven SDE, we mean an F-adapted non-explosive marked-point

11
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process N : Ω→ N#g
R×M that solves

N(dt, dm) = M(dt, dm, (0, λ(t,m)]), t ∈ R>0, a.s.,

λ(ω, t,m) = ψ(m | θtN(ω)<0), t ∈ R>0,m ∈M , ω ∈ Ω,

N≤0(ω) = N≤0(ω≤0), ω = (ω≤0, ω>0) ∈ Ω, a.s.,

(2.11)

where N≤0 is a given initial condition (see Subsection 2.1.8).

Still, notice that our problem differs slightly as we only search for solutions in the space of non-explosive

marked point processes, a smaller space than the one considered in Massoulié (1998).

2.3.3 Assumptions. The following assumptions are only required for the strong existence result (Theo-

rem 2.17 below). We first need to assume that the mark space M has finite total mass.

Assumption A. The reference measure µM is finite, i.e., µM (M ) <∞.

Next, we need to control for both the intensity functional ψ and the initial condition N≤0. We will prove

Theorem 2.17 for two different scenarios. In the first scenario, the intensity is dominated by an increasing

function of the total number of past events, while the number of events before time 0 is finite.

Assumption B. There exists a non-decreasing function a : N ∪ {∞} → N ∪ {∞} with a(n) < ∞ for all

n ∈ N and a(∞) =∞ such that:

(i) ψ(m | ξ) ≤ a(ξ((−∞, 0)×M )), m ∈M , ξ ∈ N#
R×M ;

(ii)
∑∞
n=0 a(n)−1 =∞.

Assumption C. The initial condition satisfies N≤0(ω≤0, (−∞, 0]×M ) <∞ for all ω≤0 ∈ Ω≤0.

In the second scenario, the intensity functional ψ is dominated by a Hawkes functional. Note that this

requirement is weaker than the Lipschitz condition (2.9) in Massoulié (1998).

Assumption D. There exists λ0 ∈ R≥0 and a measurable function k : R>0 ×M ×M → R≥0 such that:

(i) ψ(m | ξ) ≤ λ0 +
∫∫

(−∞,0)×M k(−t′,m′,m)ξ(dt′, dm′), m ∈M , ξ ∈ N#
R×M ;

(ii) ρ := supm∈M

∫∫
(0,∞)×M k(t′,m′,m)µM (dm′)dt′ < 1 ;

(iii) supm∈M k(t′,m′,m) <∞ for all t′ ∈ R>0, m′ ∈M .

Assumption E. The initial condition N≤0 satisfies:

(i) supt>0,m∈M E
[∫∫

(−∞,0]×M k(t− t′,m′,m)N≤0(dt′, dm′)
]
<∞ ;

(ii) λ̃≤0(ω≤0, t) := supm∈M

∫∫
(−∞,0]×M k(t− t′,m′,m)N≤0(ω≤0, dt

′, dm′) <∞, ω≤0 ∈ Ω≤0, t ∈ R>0.

Note that Assumptions D.(ii) and E.(i) are needed in order to reuse Theorem 2 in Massoulié (1998). It will

allow us to dominate the marked point process N by a Hawkes process with kernel k.
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2.3.4 Existence. We construct a solution to the Poisson-driven SDE in two mains steps. First, by

taking advantage of the discrete nature of the driving Poisson process, we construct in a pathwise fashion a

mapping N : Ω → N∞R×M that solves (2.11) up to each event time, generalising the construction in Çınlar

(2011, Chapter 6, p. 302-306) and Lindvall (1988, p. 127). Second, we dominate N by a non-explosive

marked point process to show that N is itself non-explosive, generalising the argument in Chevallier (2017,

Lemma B.1, p. 30). When working under Assumptions D and E, these two steps must actually be performed

concurrently. Then, it turns out that this constructed N admits ψ as its intensity functional on R>0 and,

thus, solves the existence problem. The proof of the following theorem, which extends the existence result

in Massoulié (1998), is given in Subsection 4.2.

Theorem 2.17 (Strong existence). Under either Assumptions A, B, C or Assumptions A, D, E, there exists

a non-explosive marked point process N : Ω→ N#g
R×M that solves the Poisson-driven SDE (Definition 2.16).

Any such N satisfies the strong initial condition N≤0 and admits ψ as its intensity functional on R>0.

As a corollary, we obtain conditions that ensure the existence of hybrid marked point processes.

Corollary 2.18 (Existence of hybrid marked point processes). Suppose that Assumption A holds and

‖φ‖∞ < ∞. Moreover, suppose that either Assumptions B and C or Assumptions D and E hold with

ψ(m | ξ) replaced by η(e | ξ), where the dominating kernel k is now a function k : R>0 ×M × E → R≥0,

and with the constraint ρ < ‖φ‖−1
∞ . Then, there exists a hybrid marked point process N : Ω → N#g

R×M with

transition function φ and event functional η that satisfies the strong initial condition N≤0.

Example 2.19 (State-dependent Hawkes processes, continuation of Example 2.15). When the transition

function φ is bounded, the above corollary establishes the existence of state-dependent Hawkes processes, as

characterised by (2.7), where the kernel k is either bounded without an integrability constraint or unbounded

(up to constraint (iii) of Assumption D) with an integrability constraint. Likewise, the existence of state-

dependent non-linear Hawkes processes (2.8) follows provided the function g therein is such that for some

λ̄0 ∈ R>0 we have supe∈E g(e, x) ≤ λ̄0 + max{x, 0} for all x ∈ R. In this case, the boundedness and

integrability assumptions above apply to the positive part of the kernel k.

2.3.5 Uniqueness. As Massoulié (1998) considers point processes on R ×M that are not necessarily

non-explosive marked point processes, he uses the Lipschitz condition (2.9) to obtain strong uniqueness in

a space of regular point processes. Here, since we restrict ourselves to non-explosive marked point pro-

cesses, the enumeration representation allows us to prove strong uniqueness more easily without any specific

assumptions. The proof is deferred until Subsection 4.3.

Theorem 2.20 (Strong uniqueness). Let N : Ω → N#g
R×M and N ′ : Ω → N#g

R×M be two non-explosive

marked point processes solving the Poisson-Driven SDE (Definition 2.16). Then N = N ′ a.s.

By applying Theorem 3.4 in Jacod (1975), we can also obtain weak uniqueness. Alternatively, we could

also have applied Theorem 14.2.IV in Daley and Vere-Jones (2008, p. 381). The idea is that the intensity

and the conditional distributions P((Tn+1,Mn+1) ∈ · | FNTn
) uniquely determine each other, see also Last and

Brandt (1995) and Jacobsen (2006, Theorem 4.3.2, p. 54). Another approach, as suggested by Massoulié

(1998), could be to use the fact that any marked point process with an intensity functional can be represented

as the strong solution to a Poisson-driven SDE like in Definition 2.16, see Jacod (1979, Theorem 14.56, p. 472),

and use the strong uniqueness result. We prove the following result in Subsection 4.3.
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Theorem 2.21 (Weak uniqueness). Let N1 and N2 be two non-explosive marked point processes (possibly

on distinct probability spaces) that admit the same intensity functional ψ on R>0. Assume also that both N1

and N2 satisfy the weak initial condition N≤0. Then, we have that PN1 = PN2 , i.e., the induced probabilities

measures on N#
R×M coincide.

As a corollary, we obtain the weak uniqueness of hybrid marked point processes.

Corollary 2.22 (Uniqueness of hybrid marked point processes). All hybrid marked point processes with

transition function φ and event functional η that satisfy the weak initial condition N≤0 induce the same

probability measure on N#
R×M .

Remark 2.23. Note that weak uniqueness might not hold for a general history F. Given an F-predictable

process λ, there could be two marked point processes N and N ′ that both admit λ as their F-intensity, but

such that PN 6= PN ′ , see Proposition 9.54.(ii) in Kallenberg (2017) for such an example. The fact the we

restrict ourselves to the natural filtration FN is crucial here.

3 Dynamics of hybrid marked point processes

In this section, we prove Theorem 2.13, which characterises the dynamics of hybrid marked point pro-

cesses.

3.1 Preliminaries

We first present a lemma that helps us reuse some results in the literature that require a specific form

for the filtration. It simply says that the information up to time u is equal to the information up to time t

to which we add the information between time t and u, where t < u.

Lemma 3.1. Let N be a non-explosive point process on R×U . Let t, u ∈ R such that u > t. Then, we have

that FNu = FNt ∨ FθtN
>0

u .

Proof. Note that

FθtN
>0

u = σ {N(A× U) : A ∈ B(R), A ⊂ (t, u], U ∈ B(U)} for all u > t.

Then, clearly FθtN>0

u ⊂ FNu . Also, FNt ⊂ FNu and, thus FNt ∨ FθtN
>0

u ⊂ FNu . On the other hand, let

A ∈ B(R) be such that A ⊂ (−∞, u] and let U ∈ B(U). We have that

N(A× U) = N(A ∩ (−∞, t])× U) +N(A ∩ (t, u]× U).

The first term is FNt -measurable while the second term is FθtN>0

u -measurable. Hence, N(A × U) is

FNt ∨ FθtN
>0

u measurable. Since, by definition, FNu is the smallest σ-algebra that makes all the N(A × U)

measurable, this implies that FNu ⊂ FNt ∨ FθtN
>0

u , which concludes the proof.

As defined in Subsection 2.1.7, an intensity process has to always be finite. We verify that, if one finds a

potentially infinite process that satisfies the definition of the intensity, then one can take a finite version of

this process and identify it with the intensity.
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Lemma 3.2. Let N be a non-explosive marked point process on R ×M and let λ̃ : Ω × R>0 ×M →
R≥0 ∪ {∞} be an F-predictable process that satisfies (2.1) for all non-negative F-predictable processes H.

Then N admits an F-intensity λ : Ω × R>0 ×M 7→ R≥0 relative to µM such that λ(ω, t,m) = λ̃(ω, t,m)

holds P(dω)µM (dm)dt-a.e.

Proof. Since the marked point process N is non-explosive, using similar arguments as in Lemma L2 of

Brémaud (1981, p. 24), one can show that, for all bounded sets A ∈ B(R>0),∫∫
A×M

λ̃(t,m)µM (dm)dt <∞ , a.s.,

which implies that λ̃(ω, t,m) <∞ holds P(dω)dtµM (dm)-a.e. By a composition argument (see the beginning

of the proof of Lemma 4.6), since λ̃ is F-predictable, we have that (ω, t,m) 7→ 1{λ̃(ω,t,m)<∞} is also F-

predictable. It is then easy to check that λ(ω, t,m) := 1{λ̃(ω,t,m)<∞}λ̃(ω, t,m) is the F-intensity of N where

we use the convention 0×∞ = 0.

The next lemma says that by integrating the intensity against the state variable x, we obtain the intensity

of the marked point process that tracks the event types, ignoring the state process.

Lemma 3.3. Let N be a marked point process on R×M with F-intensity λ relative to µM . Then, NE (·) :=

N(· ×X ) is a non-explosive marked point process on R × E with F-intensity λE : Ω × R>0 × E → R≥0

relative to µE such that λE (ω, t, e) =
∫

X λ(ω, t, e, x)µX (dx) holds P(dω)dtµE (de)-a.e.

Proof. Let H : Ω × R>0 × E → R≥0 be an F-predictable non-negative process. Then, by applying the

definition of NE and using Tonelli’s theorem, we obtain that

E
[∫∫

R>0×E

H(t, e)NE (dt, de)

]
= E

[∫∫∫
R>0×E×X

H(t, e)N(dt, de, dx)

]
= E

[∫∫∫
R>0×E×X

H(t, e)λ(t, e, x)µX (dx)µE (de)dt

]
= E

[∫∫
R>0×E

H(t, e)

(∫
X

λ(t, e, x)µX (dx)

)
µE (de)dt

]
.

The process
∫

X λ(t, e, x)µX (dx), t ∈ R>0, e ∈ E , is F-predictable, see for example Lemma 25.23 in Kallen-

berg (2002, p. 503) and we conclude using Lemma 3.2.

We now check that an intensity functional applied to the history of a point process defines a predictable

process.

Lemma 3.4. Let ψ : U × N#
R×U → R≥0 ∪ {∞} be a measurable functional and N be a non-explosive

point process on R × U that is F-adapted. Then, the process λ : Ω × R × U → R≥0 ∪ {∞} defined by

λ(ω, t, u) = ψ(u | θtN(ω)<0), ω ∈ Ω, t ∈ R, u ∈ U , is F-predictable.

Proof. By Lemma A.2.3, θtN(ω)<0 is left-continuous in t and, by assumption, the process (θtN
<0)t∈R is

F-adapted. As a consequence, the mapping (ω, t) 7→ θtN(ω)<0 is F-predictable, see for example Lemmas

25.1 and 1.10 in Kallenberg (2002, p. 491, p. 6). We then obtain that λ is F-predictable by viewing it as the

composition (ω, t, u) 7→ (u, θtN(ω)<0) 7→ ψ(u | θtN(ω)<0) and using the measurability of ψ.
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The next lemma essentially says that if two predictable processes coincide at all event times of a marked

point process, then they coincide everywhere under positive intensity. A less general variant of this result

and its proof are suggested in Brémaud (1981, Theorem T12, p. 31).

Lemma 3.5. Let NE be a non-explosive marked point process on R × E with F-intensity λE relative to

µE . Let H1 : Ω × R>0 ×M → R≥0 ∪ {∞} and H2 : Ω × R>0 ×M → R≥0 ∪ {∞} be two non-negative

F-predictable processes. Then, H1 = H2 holds P(dω)NE (ω, dt, de)µX (dx)-a.e. if and only if H1 = H2 holds

P(dω)λE (ω, t, e)dtµM (de, dx)-a.e.

Proof. By a composition argument, since H1 and H2 are F-predictable, we have that the function (ω, t,m) 7→
1{H1(ω,t,m) 6=H1(ω,t,m)} is F-predictable (see the beginning of the proof of Lemma 4.6). By Lemma 25.23 in

Kallenberg (2002, p. 503), we also have that the process
∫

X 1{H1(·,·,·,x)6=H1(·,·,·,x)}µX (dx) is F-predictable.

Using the definition of the intensity and Tonelli’s theorem, we obtain that∫
Ω

∫
R>0×M

1{H1(ω,t,m) 6=H1(ω,t,m)}µX (dx)NE (ω, dt, de)P(dω)

=

∫
Ω

∫
R>0×E

(∫
X

1{H1(ω,t,m)6=H1(ω,t,m)}µX (dx)

)
NE (ω, dt, de)P(dω)

=

∫
Ω

∫
R>0×M

1{H1(ω,t,m) 6=H1(ω,t,m)}µX (dx)λE (ω, t, e)µE (de)dtP(dω),

from which the assertion follows.

Finally, we show that the link between joint densities and conditional densities still holds when we pre-

condition on a sub-σ-algebra. Since M is a complete separable metric space and, in particular, Borel,

random elements in M always have regular conditional distributions (Kallenberg, 2002, p. 106, Theorem

A1.2, p. 561).

Lemma 3.6. Let (E,X) be a random element in M . Let G be a sub-σ-algebra, i.e., G ⊂ F , and let A ∈ G
such that P(A) > 0. Moreover, let f : Ω ×M → R≥0 ∪ {∞} be a non-negative measurable function that is

G ⊗ B(M )-measurable. If we have

P (E ∈ de,X ∈ dx | G)1A = f(e, x)µM (de, dx)1A, a.s., (3.1)

then

P (X ∈ dx |σ(E) ∨ G)1A =
f(E, x)∫

X f(E, x′)µX (dx′)
µX (dx)1A, a.s.

Proof. Let B ∈ B(X ), G ∈ G and H ∈ σ(E). On the one hand,

E
[
1G1H1{X∈B}1A

]
= E

[
1Gh(E)1{X∈B}1A

]
= E

[
1GE

[
h(E)1{X∈B}1A | G

]]
= E

[
1G1A

∫
E

∫
B

h(e)f(e, x)µX (dx)µE (de)

]
, (3.2)

where we successively used Lemma 1.13 in Kallenberg (2002, p. 7) to write 1H = h(E) using a measurable

function h : E → {0, 1}, the Tower property, the disintegration theorem in Kallenberg (2002, Theorem 6.4,

p. 108) with the regular conditional distribution of (3.1) and, finally, the product form of µM . Note that,
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here, the disintegration theorem is applied to the probability measure P(·∩A)/P(A) on the measurable space

(A,A ∩ F). On the other hand, observe that (2.4) and (3.1) imply that

P (E ∈ de | G)1A =

∫
X

f(e, x)µX (dx)µE (de)1A, a.s.

Then, using similar arguments,

E
[
1G1H

∫
B

f(E, x)∫
X f(E, x′)µX (dx′)

µX (dx)1A

]
= E

[
1Gh(E)

∫
B

f(E, x)∫
X f(E, x′)µX (dx′)

µX (dx)1A

]
= E

[
1GE

[
h(E)

∫
B

f(E, x)∫
X f(E, x′)µX (dx′)

µX (dx)1A

∣∣∣G]]
= E

[
1G1A

∫
E

(
h(e)

∫
B

f(e, x)∫
X f(e, x′)µX (dx′)

µX (dx)

)∫
X

f(e, x′)µX (dx′)µE (de)

]
.

Tonelli’s theorem and (3.2) then imply that

E
[
1G1H1{X∈B}1A

]
= E

[
1G1H

∫
B

f(E, x)∫
X f(E, x′)µX (dx′)

µX (dx)1A

]
. (3.3)

Using a monotone class argument, we show below that (3.3) can be extended to

E
[
1F1{X∈B}1A

]
= E

[
1F

∫
B

f(E, x)∫
X f(E, x′)µX (dx′)

µX (dx)1A

]
(3.4)

for all F ∈ σ(E) ∨ G, which means exactly that

P (X ∈ B |σ(E) ∨ G)1A =

∫
B

f(E, x)∫
X f(E, x′)µX (dx′)

µX (dx)1A, a.s.,

as asserted.

To prove (3.4), define the functions

µ1 : σ(E) ∨ G → [0, 1]

F 7→ µ1(F ) := E
[
1F1{X∈B}1A

]
,

µ2 : σ(E) ∨ G → [0, 1]

F 7→ µ2(F ) := E
[
1F

∫
B

f(E, x)∫
X f(E, x′)µX (dx′)

µX (dx)1A

]
.

One can check that µ1 and µ2 are bounded measures on (Ω, σ(E) ∨ G) (to swap an expectation with an

infinite sum, use the monotone convergence theorem, see for example Theorem 1.19 in Kallenberg (2002,

p. 11)). Define also the class C := {G ∩H : G ∈ G, H ∈ σ(E)}. Equation (3.3) means that µ1(C) = µ2(C)

for all C ∈ C. Moreover, C is a π-system such that Ω ∈ C. Also, note that σ(E) ∪ G ⊂ C ⊂ σ(E) ∨ G and,

thus, σ(C) = σ(E) ∨ G. As a consequence, we can apply Lemma 1.17 in Kallenberg (2002, p. 9) to conclude

that µ1(F ) = µ2(F ) for all F ∈ σ(E) ∨ G, meaning that (3.4) holds.

3.2 Implied dynamics and characterisation

Proof of Theorem 2.13. Recall that we denote by λ the FN -intensity of N relative to µM and by λE the

FN -intensity of NE := N(· ×X ) relative to µE .
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Necessity. Assume that N is a hybrid marked point process with transition function φ and event

functional η. We first observe that statement (i) holds simply by applying Lemma 3.3 and using the fact

that φ(· | e, x) is a probability density for all e ∈ E and x ∈X .

Next, we show that statement (ii) holds. This is clearly true when P(τt <∞) = 0 and, thus, we assume

that P(τt <∞) > 0. By applying Theorem T6 in Brémaud (1981, p. 236), we obtain that, for all M ∈ B(M ),

P
(
(E,X) ∈M | FNτt−

)
1{τt<∞} =

∫
M
λ(τt,m)µM (dm)∫

M λ(τt,m′)µM (dm′)
1{τt<∞}, a.s.

This is allowed since Lemma 3.1 tells us that the filtration FN is within the framework of this result. Hence,

we have identified the unique regular conditional distribution of (E,X) given FNτt− on the measurable space

({τt < ∞}, {τt < ∞} ∩ F) equipped with the measure P(· ∩ {τt < ∞})/P({τt < ∞}) (Kallenberg, 2002,

Theorem 6.3, p. 107). Besides, observe that the mapping (ω,m) 7→ λ(ω, τt(ω),m)1{τt(ω)<∞} is FNτt−⊗B(M )-

measurable, see for example Lemma 25.3 in Kallenberg (2002, p. 492). Using Lemma 1.26 in Kallenberg

(2002, p. 14), we obtain that the function f defined by

f(ω, e, x) =
λ(ω, τt(ω), e, x)∫

M λ(ω, τt(ω),m′)µM (dm′)
1{τt(ω)<∞}, ω ∈ Ω, e ∈ E , x ∈X ,

is FNτt− ⊗B(M )-measurable. We can then apply Lemma 3.6 with G = FNτt− and A = {τt <∞}. This yields

that

P
(
X ∈ dx |σ(E) ∨ FNτt−

)
1{τt<∞} =

λ(τt, E, x)∫
X λ(τt, E, x′)µX (dx′)

µX (dx)1{τt<∞}, a.s. (3.5)

By viewing the term φ(x | e,Xt) as a measurable function ϕ applied to (e, x, θtN
<0) where ϕ(x, e | ξ) =

φ(x | e, F (ξ)), and using the measurability of the state functional F and the transition function φ, we obtain

by Lemma 3.4 that φ(x | e, θtN<0), t ∈ R, e ∈ E , m ∈M , is FN -predictable. Similarly, note that η(e | θtN<0),

t ∈ R, e ∈ E , is also FN -predictable (this will be useful when proving sufficiency). Besides, thanks to the

assumption on λ,

λ(ω, t, e, x)∫
X λ(ω, t, e, x′)µX (dx′)

= φ(x | e,Xt(ω)), P(dω)dtµM (de, dx)-a.e.

Hence, using Lemma 3.5, (3.5) becomes

P
(
X ∈ dx |σ(E) ∨ FNτt−

)
1{τt<∞} = φ(x |E,Xτt)µX (dx)1{τt<∞}, a.s.

To obtain (2.6), it remains to notice that Xτt = Xt+ on {τt <∞} since there is no event on the time interval

(t, τt) by definition of τt. Also, since the ground point process N(· ×M ) admits an FN -intensity, we have

that N({t} ×M ) = 0 a.s., implying that Xt+ = Xt a.s. To show the statement in Remark 2.14, simply use

(2.6) and the tower property to obtain that

E
[
1F1{τt<∞}1X∈B

]
= E

[
1F1{τt<∞}E

[
1X∈B |σ(E) ∨ FNτt−

]]
= E

[
1F1{τt<∞}

∫
B

φ(x |E,Xt)µX (dx)

]
for all F ∈ σ(E) ∨ FNt , B ∈ B(X ) and observe that

∫
B
φ(x |E,Xt)µX (dx) is σ(E) ∨ FNt -measurable.

Sufficiency. Assume that N is a non-explosive marked point process on R×M such that it admits an

FN -intensity relative to µM and such that statements (i) and (ii) hold. We want to show that λ(ω, t, e, x) =
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φ(x | e,Xt(ω))η(e | θtN(ω)<0) holds P(dω)µM (de, dx)dt-a.e. For all t ∈ R≥0, by using statement (ii), (3.5),

Lemmas 3.3 and 3.5, and statement (i), we obtain that

φ(x |E,Xτt)µX (dx)1{τt<∞} = P
(
X ∈ dx |σ(E) ∨ FNτt−

)
1{τt<∞}

=
λ(τt, E, x)∫

X λ(τt, E, x′)µX (dx′)
µX (dx)1{τt<∞}

=
λ(τt, E, x)

λE (τt, E)
µX (dx)1{τt<∞}

=
λ(τt, E, x)

η(E | θτtN<0)
µX (dx)1{τt<∞}, a.s.

This means that, for all t ∈ R≥0, we have that

λ(τt, E, x)1{τt<∞} = φ(x |E,Xτt)η(E | θτtN<0)1{τt<∞}, µX (dx)-a.e., a.s.

This holds a.s. simultaneously for all t ∈ Q∩R≥0, whence, using that the number of events in N is countable

and finite in any bounded time interval,

λ(ω, t, e, x) = φ(x | e,Xt(ω))η(e | θtN(ω)<0), P(dω)NE (ω, dt, de)µX (dx)-a.e.

By Lemma 3.5, the above equality then implies that

λ(ω, t, e, x) = φ(x | e,Xt(ω))η(e | θtN(ω)<0), P(dω)λE (ω, t, e)dtµM (de, dx)-a.e.

By noticing that, on λE (ω, t, e) = 0, we have that η(e | θtN(ω)<0) = 0 holds P(dω)dtµE (de)-a.e. and that

λ(ω, t, e, x) = 0 holds P(dω)dtµE (de)µX (dx)-a.e. (using again Lemma 3.3), we conclude that the above

equation actually holds P(dω)dtµM (de, dx)-a.e.

4 Existence and uniqueness

In this section, we prove the strong existence result (Theorem 2.17) by means of a Poisson embedding

lemma given below. Subsequently, we also prove the strong and weak uniqueness results (Theorems 2.20 and

2.21).

4.1 Preliminaries

4.1.1 Example violating the Lipschitz condition. We give here an example of a hybrid marked point

process that does not satisfy the Lipschitz condition (2.9), implying that the existence and uniqueness results

in Massoulié (1998) do not apply.

Example 4.1. Set E = {0, 1} and X = {0, 1} with µE = δ0 + δ1 and µX = δ0 + δ1. Consider an

intensity functional ψ that corresponds to a hybrid marked point process with transition function φ and

event functional η (see Definition 2.9). Take η to be a Hawkes functional of the form

η(e | ξ) = ν +

∫∫
R<0×M

k(−t′, x′, e)ξ(dt′, de′, dx′),
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where ν ∈ R>0 and k : R>0 ×X × E → R>0 is continuous in time and strictly positive. Let t0 ∈ R<0 and

choose ξ0, ξ1 ∈ N#g
R×M such that ξ0 and ξ1 coincide on (−∞, t0] (i.e., θt0ξ

≤0
0 = θt0ξ

≤0
1 ) but F (ξ0) = 0 and

F (ξ1) = 1 (thus, ξ0 and ξ1 do not coincide on (t0, 0)). Assume also that φ(0 | 0, 1) > φ(0 | 0, 0), η(0 | ξ1) <∞,

and
∫∫

(t0,0)×M k(−t′, x′, 0)ξ1(dt′, de′, dx′) >
∫∫

(t0,0)×M k(−t′, x′, 0)ξ0(dt′, de′, dx′). Then, following some

computations that are left to the reader,

|ψ(0, 0 | ξ1)− ψ(0, 0 | ξ0)| ≥ (φ(0 | 0, 1)− φ(0 | 0, 0))

∫∫
(−∞,t0]×M

k(−t, x, 0)ξ0(dt, dx).

Next, consider any non-negative kernel k : R>0 ×M ×M → R≥0. We have that∫∫
R<0×M

k(−t,m, 0, 0)|ξ1 − ξ0|(dt, dm) =

∫∫
(t0,0)×M

k(−t,m, 0, 0)|ξ1 − ξ0|(dt, dm).

We can now add as many points as necessary to ξ0 and ξ1 on (−∞, t0] to guarantee that

|ψ(0, 0 | ξ1)− ψ(0, 0 | ξ0)| >
∫∫

R<0×M

k(−t,m, 0, 0)|ξ1 − ξ0|(dt, dm).

Consequently, the intensity functional ψ does not satisfy the Lipschitz condition (2.9).

4.1.2 Integration with respect to Poisson processes. We first clarify briefly the link between point

processes and random measures. A random measure M on a measurable space (S,S) is a mapping M :

Ω×S → R≥0∪{∞} such that M(ω, ·) is a measure on (S,S) for all ω ∈ Ω and M(·, A) is a random variable

for all A ∈ S, see Kallenberg (2002, p. 106) and Çınlar (2011, Chapter 6, p. 243). Note that the concepts

of internal history and adaptedness of Subsection 2.1.6 can be directly extended to random measures. Not

surprisingly, point processes are exactly the boundedly finite integer-valued random measures.

Proposition 4.2. Let N be a random measure on (U ,B(U)) such that N(ω, ·) ∈ N#
U for all ω ∈ Ω. Then

N is a non-explosive point process on U . In return, any non-explosive point process N on U is a random

measure on (U ,B(U)) such that N(ω, ·) ∈ N#
U for all ω ∈ Ω.

Proof. See Proposition 9.1.VIII in Daley and Vere-Jones (2008, p. 8).

One can show that Poisson processes are Poisson random measures in the sense of Çınlar (2011, Chapter

6, p. 249). This enables us to apply an important result on integration with respect to Poisson random

measures. Before stating the result, we need to define what it means for a Poisson process to be Poisson

relative to a filtration.

Definition 4.3. Let N be a Poisson process on R × U and F = (Ft)t∈R be a filtration. We say that N is

Poisson relative to F if for all t ∈ R, the point process θtN
≤0 is Ft-measurable and σ(θtN

>0) is independent

of Ft.

Trivially, a Poisson process N is always Poisson relative to its internal history FN . The next result plays

a crucial role in the Poisson embedding technique, which is later used to construct marked point processes

with given intensities.

Theorem 4.4. Let N be a Poisson process on R × U with parameter measure ν. Let F = (Ft)t∈R be a

filtration and suppose that N is Poisson relative to F. Then, for every non-negative F-predictable process

H : Ω× R× U → R≥0, we have that

E
[∫∫

R×U
H(t, u)N(dt, du)

]
= E

[∫∫
R×U

H(t, u)ν(dt, du)

]
.
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Proof. See Theorem 6.2 in Çınlar (2011, Chapter 6, p. 299).

4.1.3 Driving Poisson process. We prove that the mapping M : Ω → N#
R×M×R defined by (2.10) is

still a Poisson process.

Lemma 4.5. The mapping M : Ω→ N#
R×M×R is a Poisson process on R×M ×R with parameter measure

dtµM (dm)dz. Moreover, M is Poisson relative to F.

Proof. By composition, using the measurability of M>0, it is easy to check that M is a measurable mapping

and, thus, it is a non-explosive point process. To show that M is a Poisson process with parameter measure

dtµM (dm)dz, it is enough notice that, for any n ∈ N, for every family of bounded sets (Ai)i∈{1,...,n}, for all

k1, . . . , kn ∈ N,

P(M(Ai) = ki, i = 1, . . . , n) = P>0(M>0(Ai) = ki, i = 1, . . . , n),

and use the fact that M>0 is a Poisson process with parameter measure dtµM (dm)dz. To show that θtM
≤0

is Ft-measurable for any t ∈ R, use the fact that θtM
≤0
>0 is FM>0

t -measurable (since a Poisson process is

always Poisson relative to its internal history) along with a composition argument. Similarly, one can show

that σ(θtM
>0) ⊂ {∅,Ω≤0}⊗σ(θtM

>0
>0 ) and, thus, to show that σ(θtM

>0) is independent of Ft, it is enough

to show that {∅,Ω≤0} ⊗ σ(θtM
>0
>0 ) is independent of Ft. For this, let A≤0 ∈ {∅,Ω≤0}, A>0 ∈ σ(θtM

>0
>0 ),

B≤0 ∈ F
N≤0

t and B>0 ∈ FM>0

t . Then, using the fact that M>0 is Poisson relative to FM>0 , we have that

P(A≤0 ×A>0 ∩B≤0 ×B>0) = P(A≤0 ∩B≤0 ×A>0 ∩B>0) = P≤0(A≤0 ∩B≤0)P>0(A>0 ∩B>0)

= P≤0(A≤0)P≤0(B≤0)P>0(A>0)P>0(B>0)

= P(A≤0 ×A>0)P(B≤0 ×B>0).

This shows that two π-systems generating {∅,Ω≤0}⊗σ(θtM
>0
>0 ) and FN≤0

t ⊗FM>0

t , respectively, are indepen-

dent. We conclude using Lemma 3.6 in Kallenberg (2002, p. 50) that {∅,Ω≤0}⊗σ(θtM
>0
>0 ) and FN≤0

t ⊗FM>0

t

are independent. We can then verify that {∅,Ω≤0} ⊗ σ(θtM
>0
>0 ) remains independent of the completion of

FN≤0

t ⊗FM>0

t , which by definition is Ft. Indeed, remember that Ft := σ(C) with C := (FN≤0

t ⊗FM>0

t ) ∪A
and where A denotes the class of all subsets of P-null sets in F . It then suffices to notice that C is a π-system

and that {∅,Ω≤0} ⊗ σ(θtM
>0
>0 ) remains independent of C.

4.1.4 Poisson-embedding lemma. We are now able to show the following key lemma which demon-

strates how the extra-dimension of the Poisson process M allows us to generate a marked point process with

a given intensity.

Lemma 4.6 (Poisson embedding). Let λ : Ω × R>0 ×M → R≥0 be an F-predictable process. Then, the

mapping

N : Ω× B(R>0 ×M )→ R≥0 ∪ {∞}

(ω,A) 7→ N(ω,A) :=

∫∫
A

∫
(0,λ(ω,t,m)]

M(ω, dt, dm, dz) (4.1)

is an F-adapted integer-valued random measure on R>0×M . Moreover, for every non-negative F-predictable

process H : Ω× R>0 ×M → R≥0, we have that

E
[∫∫

R>0×M

H(t,m)N(dt, dm)

]
= E

[∫∫
R>0×M

H(t,m)λ(t,m)µM (dm)dt

]
.
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Proof. First, let A ∈ B(R>0 ×M ) and consider the following composition

(ω, t,m, z) 7→ (λ(ω, t,m), z) 7→ 1(0,λ(ω,t,m)](z)

to notice that 1(0,λ(ω,t,m)](z) is F-predictable by means of Lemma 1.7 and Lemma 1.8 in Kallenberg (2002,

p. 5). Then, the product 1A(t,m)1(0,λ(ω,t,m)](z) of two F-predictable processes is also F-predictable by

Lemma 1.12 in Kallenberg (2002, p. 7). This ensures that the integral∫∫
A

∫
(0,λ(ω,t,m)]

M(ω, dt, dm, dz) =

∫∫∫
R>0×M×R

1A(t,m)1(0,λ(ω,t,m)](z)M(ω, dt, dm, dz)

is well defined for all ω ∈ Ω and that N(·, A) is a random variable (see Subsection 2.1.5).

Second, let ω ∈ Ω. For any finite family of disjoint sets A1, . . . , An ∈ B(R>0×M ), n ∈ N, we clearly have

that N(ω,
⋃
i≤nAi) =

∑
i≤nN(ω,Ai), which means that N(ω, ·) is finitely additive. To prove that N(ω, ·)

is countably additive, invoke finite additivity and apply the monotone convergence theorem. These first two

steps show that N is indeed a random measure.

Third, to show that N is F-adapted, first consider processes λ : Ω × R>0 ×M → R≥0 of the form

λ(ω, t,m) = 1F (ω)1(s,u](t)1C(m) where F ∈ Fs, s, u ∈ R>0, s < u, C ∈ B(M ). For any t ∈ R>0, any

A ∈ B(R>0) such that A ⊂ (0, t] and any B ∈ B(M ), we obtain that

N(ω,A×B) = 1F (ω)M(ω,A ∩ (s, u]×B ∩ C × (0, 1]),

which is Ft-measurable since M is F-adapted by Lemma 4.5. Hence, N is F-adapted. To extend this result

to any F-predictable process λ, one can use a monotone class argument like in the proof of Proposition A.4.1

for example.

Fourth, let ω ∈ Ω. By the definition of N and by the linearity of the integral, for all simple non-negative

functions f on R>0 ×M , we have that∫∫
R>0×M

f(t,m)N(ω, dt, dm) =

∫∫∫
R>0×M×R

f(t,m)1(0,λ(ω,t,m)](z)M(ω, dt, dm, dz).

Then, by Lemma 1.11 in Kallenberg (2002, p. 7) and the monotone convergence theorem, we have that the

above equality holds for any B(R>0 ×M )-measurable non-negative function f . In particular, we have that,

for all ω ∈ Ω,∫∫
R>0×M

H(ω, t,m)N(ω, dt, dm) =

∫∫∫
R>0×M×R

H(ω, t,m)1(0,λ(ω,t,m)](z)M(ω, dt, dm, dz).

Fifth, using Lemma 4.5 and Theorem 4.4, we deduce that

E
[∫∫

R>0×M

H(t,m)N(dt, dm)

]
= E

[∫∫∫
R>0×M×R

H(t,m)1(0,λ(t,m)](z)M(dt, dm, dz)

]
= E

[∫∫∫
R>0×M×R

H(t,m)1(0,λ(t,m)](z)dtµM (dm)dz

]
= E

[∫∫
R>0×M

H(t,m)λ(t,m)µM (dm)dt

]
.

Remark 4.7. Similar results are given by Brémaud and Massoulié (1996, Lemma 3, p. 1571), Massoulié

(1998, Lemma 1, p. 3) and Torrisi (2016, Lemma 2.1, p. 4). They refer to Lewis and Shedler (1976)
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and Ogata (1981) for proofs. The fifth part of our proof follows Daley and Vere-Jones (2008, Proposition

14.7.I, p. 427), but we could not find the first four parts anywhere. For the special case M = {0} (i.e.,

for univariate point processes), a similar proof is given by Çınlar (2011, Theorem 6.11, p. 303) while an

alternative proof is given by Chevallier et al. (2015, Theorem B.11). Besides, our version of this lemma does

not impose any local integrability condition on λ and, thus, does not say if the obtained random measure N

is boundedly finite. Finally, note that (4.1) can be rewritten using the compact notation of Massoulié (1998)

as N(dt, dm) = M(dt, dm, [0, λ(t,m)]), t ∈ R>0.

We can now prove the final statement in Thoerem 2.17, which we restate here as a corollary.

Corollary 4.8. Let N : Ω→ N#g
R×M be a solution to the Poisson-driven SDE (Definition 2.16) under either

Assumptions A, B, C, or Assumptions A, D, E. Then, N admits ψ as its intensity functional on R>0.

Proof. Let G ∈ F be the almost sure event that (2.11) holds. Consider the following modifications of N and

λ, where λ is defined as in (2.11):

Ñ(ω) := N(ω)1G(ω), ω ∈ Ω, and λ̃(ω, t,m) := λ(ω, t,m)1G(ω), ω ∈ Ω, t ∈ R>0,m ∈M .

Then, Ñ and λ̃ satisfy (4.1) and, using either Assumptions B.(i) and C or Assumptions D.(i) and E.(ii), one

can check that λ̃(ω, t,m) <∞ for all ω ∈ Ω, t ∈ R>0, m ∈M . Moreover, by Lemma 3.4, λ is FN -predictable,

and, thus, F-predictable as N is F-adapted. Since the filtration F is complete, this implies that λ̃ is also

F-predictable. Now, consider any non-negative FN -predictable process H : Ω×R>0 ×M → R≥0 and apply

Lemma 4.6 to obtain

E
[∫∫

R>0×M

H(t,m)N(dt, dm)

]
= E

[∫∫
R>0×M

H(t,m)Ñ(dt, dm)

]
= E

[∫∫
R>0×M

H(t,m)λ̃(t,m)µM (dm)dt

]
= E

[∫∫
R>0×M

H(t,m)λ(t,m)µM (dm)dt

]
.

We conclude that N admits ψ as its intensity functional using Lemma 3.2.

Given a non-explosive point process N on R ×M that solves (2.11) or is defined through a Poisson

embedding as in Lemma 4.6, one can ask when N is in fact a non-explosive marked point process. To this

end, it is useful to define the following random measures induced by the driving Poisson process M :

Ln(ω, ·) := M(ω, · ×M × (0, n]), ω ∈ Ω, n ∈ N.

We are then able to find the following sufficient condition on λ.

Lemma 4.9 (Simple ground measure). Let λ : Ω × R>0 ×M → R≥0 be an F-predictable process and let

N be the F-adapted integer-valued random measure on R>0 ×M defined by (4.1). Then, if Assumption A

holds and if supm∈M λ(t,m) <∞ for all t ∈ R>0, a.s., we have that N({t} ×M ) ≤ 1 for all t ∈ R>0, a.s.

Proof. Each Ln is a Poisson random measure on R in the sense of Çınlar (2011, Chapter 6, p. 249) with

boundedly finite parameter measure nµM (M )dt. Applying Theorem 2.17 in Çınlar (2011, Chapter 6, p. 256)

for each n ∈ N, there exists a set B ∈ F such that P(B) = 1 and such that, for all ω ∈ B and n ∈ N,
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Ln(ω) ∈ N#g
R (i.e., Ln, n ∈ N, are simultaneously simple). Next, let A be the almost sure event that

supm∈M λ(t,m) <∞ for all t ∈ R>0. Fix ω ∈ A ∩B and use the assumption on λ to find that

N(ω, {t} ×M ) =

∫
{t}

∫
M

∫
(0,λ(ω,s,m)]

M(ω, ds, dm, dz)

≤M
(
ω, {t} ×M ×

(
0, sup
m∈M

λ(ω, t,m)

])
≤M (ω, {t} ×M × (0, p(ω, t)]) = Lp(ω,t)(ω, {t}) ≤ 1,

where p(ω, t) ∈ N is such that supm∈M λ(ω, t,m) ≤ p(ω, t).

4.2 Strong existence: pathwise construction via Poisson embedding

4.2.1 Existence under Assumptions A, B, C. We begin by proposing a construction of a candidate

solution N : Ω → N∞R×M to (2.11). We proceed in a pathwise fashion. Under Assumption A, using the

definition of a Poisson process, it is not difficult to see that, given n ∈ N, Ln ∈ N#
R a.s. This implies that

F1 := {ω ∈ Ω |Ln(ω) ∈ N#
R , n ∈ N} ∈ F

is an almost sure event, which plays a key role in our pathwise construction.

Algorithm 4.10. Construct the mapping N : Ω→ N∞R×M as follows. For all ω = (ω≤0, ω>0) ∈ F1, initialise

N0(ω) := N≤0(ω≤0), T0(ω) := 0, M0(ω) := ∅, and λ0(ω, t,m) := ψ(m | θtN0(ω)<0) for all t ∈ R>0, m ∈M .

Define recursively the sequences (Nn)n∈N, (Tn)n∈N, (Mn)n∈N, and (λn)n∈N as follows. For all n ∈ N,

• if Tn(ω) <∞, then

Tn+1(ω) := sup

{
u > Tn(ω) :

∫∫
(Tn(ω),u)×M

∫
(0,λn(ω,t,m)]

M(ω, dt, dm, dz) = 0

}
; (4.2)

– if Tn+1(ω) <∞, then

Mn+1(ω) := {m ∈M : M(ω, {Tn+1(ω)} × {m} × (0, λn(ω, Tn+1(ω),m)]) > 0} ;

Nn+1(ω) :=

n+1∑
i=1

∑
m∈Mi(ω)

M(ω, {Ti(ω)} × {m} × (0, λi−1(ω, Ti(ω),m)])δ(Ti(ω),m) ; (4.3)

λn+1(ω, t,m) := ψ(m | θtNn+1(ω)<0), t ∈ R>0,m ∈M ; (4.4)

– if Tn+1(ω) =∞, then

Mn+1(ω) := ∅ ;

Nn+1(ω) := Nn(ω) ;

λn+1(ω, t,m) := λn(ω, t,m), t ∈ R>0,m ∈M ;

• if Tn(ω) =∞, then

Tn+1(ω) :=∞ ;

Mn+1(ω) := ∅ ;

Nn+1(ω) := Nn(ω) ;

λn+1(ω, t,m) := λn(ω, t,m), t ∈ R>0,m ∈M .
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For all ω = (ω≤0, ω>0) ∈ Ω \ F1, set Nn(ω) := N≤0(ω≤0), Tn(ω) := ∞, Mn(ω) := ∅ , λn(ω, t,m) := 0,

t ∈ R>0, m ∈ M , for all n ∈ N. Then, for all ω ∈ Ω, for all n ∈ N, define N(ω) on (−∞, Tn+1(ω)) by

θTn+1(ω)N(ω)<0 := θTn+1(ω)Nn(ω)<0. Define also the explosion time T∞(ω) := limn→∞ Tn(ω). If T∞(ω) <

∞, extend N(ω) to [T∞(ω),∞) by θT∞(ω)N(ω)≥0 := 0. This is equivalent to defining N(ω) as

N(ω) := lim
n→∞

Nn(ω) =

∞∑
n=1

∑
m∈Mn(ω)

M(ω, {Tn(ω)} × {m} × (0, λn−1(ω, Tn(ω),m)])δ(Tn(ω),m)1{Tn(ω)<∞}.

Algorithm 4.10 would be ill-defined if the set in (4.2) were empty. This would mean that there are infinitely

many events just after the time Tn. The following proposition shows that this actually never happens and,

thus, ensures that Algorithm 4.10 is well-defined. We also need to prove that the set Mn is finite and that

Nn(ω) ∈ N#
R×M for all n ∈ N, because otherwise λn(ω, t,m) might be ill-defined (ψ is a functional on

M ×N#
R×M ).

Proposition 4.11. In Algorithm 4.10, under Assumptions A, B.(i) and C, we have that, for every ω ∈ F1,

card(Mn(ω)) <∞, Nn(ω) ∈ N#
R×M , ‖λi‖(ω) := supt>0,m∈M λi(ω, t,m) <∞, for all n ∈ N, and{

u > Tn(ω) :

∫∫
(Tn(ω),u)×M

∫
(0,λn(ω,t,m)]

M(ω, dt, dm, dz) = 0

}
6= ∅ for all n ∈ N s.t. Tn(ω) <∞.

Hence, Algorithm 4.10 is well-defined under these assumptions.

Proof. We show the desired result by induction. Take any ω = (ω≤0, ω>0) ∈ F1. Let n ∈ N and for all i ∈ N
such that i < n and Ti(ω) <∞, assume that{

u > Ti(ω) :

∫∫
(Ti(ω),u)×M

∫
(0,λi(ω,t,m)]

M(ω, dt, dm, dz) = 0

}
6= ∅. (4.5)

For all i ∈ N such that i ≤ n, assume that Ni(ω) ∈ N#
R×M and that ‖λi‖(ω) := supt>0,m∈M λi(ω, t,m) <∞.

If Tn(ω) =∞, then, by construction, this is also true for n+ 1.

Now, assume that Tn(ω) < ∞. We first show that (4.5) holds also for i = n. Take any ε > 0. We have

that∫∫
(Tn(ω),Tn(ω)+ε)×M

∫
(0,λn(ω,t,m)]

M(ω, dt, dm, dz) ≤M(ω, (Tn(ω), Tn(ω) + ε)×M × (0, ‖λn‖(ω)])

≤ Lpn(ω)(ω, (Tn(ω), Tn(ω) + ε)) =: Un(ω, ε) <∞,

where pn(ω) ∈ N is such that ‖λn‖(ω) ≤ pn(ω) and we used the fact that Lpn(ω)(ω) ∈ N#
R . If Un(ω, ε) = 0,

then clearly (4.5) is satisfied for i = n. If not, M(ω) has a finite number of points in (Tn(ω), Tn(ω) + ε) ×
M × (0, ‖λn‖(ω)] and there exists 0 < ε′ < ε such that Un(ω, ε′) = 0, in which case (4.5) is again satisfied

for i = n. Note that the integral in (4.5) is well-defined since λi(ω, ·, ·) is a measurable function on R>0×M

for all ω ∈ Ω. To see this, consider the composition (t,m) 7→ (m, θtNi(ω)<0) 7→ ψ(m | θtNi(ω)<0) and use

Lemma A.2.3, the measurability of ψ and Lemma 1.8 in Kallenberg (2002).

Second, we show that card(Mn+1) <∞ and Nn+1(ω) ∈ N#
R×M . If Tn+1(ω) =∞, then this is immediate.

If not, using again that Lpn(ω)(ω) ∈ N#
R ,∑

m∈Mn+1

M(ω, {Tn+1(ω)} × {m} × (0, λn(ω, Tn+1(ω),m)]) ≤M(ω, {Tn+1(ω)} ×M × (0, ‖λn‖(ω)])

≤ Lpn(ω)(ω, {Tn+1(ω)}) <∞,
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which implies that the set Mn+1(ω) is finite and, in view of (4.3), that Nn+1(ω) ∈ N#
R×M . Note that this

also proves that Nn+1(ω, (0, Tn+1(ω))×M ) <∞.

Third, we show that ‖λn+1‖(ω) <∞. If Tn+1(ω) =∞, then this is immediate. If not, by (4.4) and using

Assumptions B.(i) and (4.3), we have that for all t > 0, m = (x, e) ∈M ,

λn+1(ω, t,m) ≤ a (Nn+1(ω, (−∞, t)×M ))

= a (Nn+1(ω, (−∞, 0]×M ) +Nn+1(ω, (0, t)×M ))

≤ a (N≤0(ω≤0, (−∞, 0]×M ) +Nn+1(ω, (0, Tn+1(ω))×M )) . (4.6)

Since Nn+1(ω, (0, Tn+1(ω)) ×M ) < ∞ and, by Assumption C, N≤0(ω≤0, (−∞, 0] ×M ) < ∞, this implies

that ‖λn+1‖(ω) <∞.

Regarding the basis of this induction, it is immediate that N0(ω) = N≤0(ω≤0) ∈ N#
R×M . To see that

‖λ0‖(ω) <∞, simply set n = −1 in (4.6).

We show that the constructed mapping N : Ω→ N∞R×M satisfies indeed (2.11) up to each event time.

Proposition 4.12. Under Assumptions A, B.(i) and C, the mapping N : Ω → N∞R×M given by Algorithm

4.10 is such that N(ω) solves (2.11) on (−∞, Tn(ω)) for all n ∈ N, for all ω ∈ F1.

Proof. Define the process λ(ω, t,m) := ψ(m | θtN(ω)<0), ω ∈ Ω, t ∈ (0, T∞(ω)), m ∈ M . Take any ω =

(ω≤0, ω>0) ∈ F1. By construction, N(ω)≤0 = N0(ω) = N≤0(ω≤0) and, thus, N satisfies the strong initial

condition N≤0. Take any n ∈ N such that Tn+1(ω) < ∞ in Algorithm 4.10 and consider the time interval

(Tn(ω), Tn+1(ω)]. By construction, we have that

Nn+1(ω, dt, dm) = M(ω, dt, dm, (0, λn(ω, t,m)]) for all t ∈ (Tn(ω), Tn+1(ω)]. (4.7)

But, by definition, on (−∞, Tn+1(ω)], N(ω) = Nn+1(ω) and thus, for all t ∈ (0, Tn+1(ω)], m ∈M ,

λ(ω, t,m) = ψ(m | θtN(ω)<0) = ψ(m | θtNn+1(ω)<0) = ψ(m | θtNn(ω)<0) = λn(ω, t,m),

by the definition (4.4) of λn, since Nn+1(ω) and Nn(ω) can only differ by a mass at time Tn+1(ω). Conse-

quently, (4.7) can be rewritten on (Tn(ω), Tn+1(ω)] as

N(ω, dt, dm) = M(ω, dt, dm, (0, λ(ω, t,m)]). (4.8)

This shows that the constructed N(ω) solves (2.11) on (−∞, Tn(ω)] for all n ∈ N such that Tn(ω) < ∞.

Now, if there is n ∈ N such that Tn(ω) <∞ and Tn+1(ω) =∞, then clearly the constructed N(ω) is null on

(Tn(ω),∞) and by similar arguments, (4.8) holds on (Tn(ω),∞). This now allows us to conclude that N(ω)

solves (2.11) on (−∞, Tn(ω)) for all n ∈ N in both cases Tn(ω) <∞ and Tn(ω) =∞.

It will also be crucial for the strong existence proof to show that, for all n ∈ N, Nn is adapted to the

filtration F and λn is F-predictable.

Proposition 4.13. In Algorithm 4.10, for all n ∈ N, λn is F-predictable, Nn is an F-adapted non-explosive

point process and Tn is an F-stopping time.
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Proof. We proceed by induction. Regarding the basis, as the filtration F is complete, clearly N0 is F-

adapted and T0 is an F-stopping time. Now assume that Nn is F-adapted and Tn is an F-stopping time

for some n ∈ N. First, observe that this implies that λn is F-predictable by simply using the identity

λn(ω, t,m) = ψ(m | θtNn(ω)<0)1F1
(ω) and invoking Lemma 3.4, the fact that FNn

t ⊂ Ft, t ∈ R, and the

assumption that F is complete. Second, let t ∈ R and notice that

{Tn+1 ≤ t} =

{∫∫∫
R×M×R

1(Tn,t](s)1(0,λn(s,m)](z)M(ds, dm, dz) > 0

}
∩ {Tn <∞} ∩ F1. (4.9)

Because Tn is an F-stopping time, we have that (1(Tn,t](s))s∈R is F-adapted and left-continuous, implying

that it is F-predictable, see for example Lemma 25.1 in Kallenberg (2002, p. 491). Adapting the arguments

of the third part of the proof of Lemma 4.6, we deduce that the first event on the right-hand side of (4.9)

belongs to Ft and so Tn+1 is an F-stopping time. Third, using Proposition 4.12 and looking at Algorithm

4.10, notice that Nn+1 satisfiesNn+1(ω, dt, dm) = M(ω, dt, dm, (0, λn(ω, t,m)1{t≤Tn+1(ω)}]), ω ∈ Ω, t ∈ R>0,

N≤0(ω) = N≤0(ω≤0), ω = (ω≤0, ω>0) ∈ Ω,

where λn(t,m)1{t≤Tn+1} is F-predictable as a product of F-predictable processes, note that 1{t≤Tn+1} is

F-adapted and left-continuous since Tn+1 is an F-stopping time. Now, applying Lemma 4.6, it follows that

Nn+1 is indeed F-adapted.

We are now in a position to prove Theorem 2.17 under Assumption A, B and C for the following intensity

functional:

ψ′ : M ×N#
R×M → R≥0 ∪ {∞}

(m, ξ) 7→ ψ′(m | ξ) := a (ξ((−∞, 0)×M )) .

Still, note that the first step of the following proof remains true for general intensity functionals ψ that

satisfy Assumption B and will be reused in other parts of the proof of Theorem 2.17.

Proof of Theorem 2.17, Part 1. Let N : Ω → N∞R×M be given by Algorithm 4.10 under Assumptions A, B

and C, which is well-defined by Proposition 4.11, and consider here the special case ψ = ψ′. We will prove

that N admits a version that solves the Poisson-driven SDE. We proceed in four steps.

First, notice that for all ω ∈ Ω, t < T∞(ω), there exists n ∈ N such that θtN(ω)<0 = θtNn(ω)<0, which

implies by Proposition 4.15 that the process

λ(ω, t,m) := ψ(m | θtN(ω)<0)1F1(ω)1{t<T∞(ω)}, ω ∈ Ω, t ∈ R>0,m ∈M ,

is well-defined and finite, and that, for all ω ∈ Ω, t ∈ R>0, m ∈M ,

λ(ω, t,m) = lim
n→∞

ψ(m | θtNn(ω)<0)1F1
(ω)1{t<T∞(ω)} = lim

n→∞
λn(ω, t,m)1{t<T∞(ω)}.

By Proposition 4.12, and because of the way we constructed N , we have that N and λ satisfy (4.1). By

Proposition 4.13, for all n ∈ N, λn is F-predictable and Tn is an F-stopping time. Since T∞ = limn→∞ Tn,

we have that T∞ is an F-predictable time, which implies by Lemma 25.3.(ii) in Kallenberg (2002, p. 492)

that 1{t<T∞} is F-predictable. As λ is a limit of F-predictable processes, we have that λ is also F-predictable
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by Lemma 1.9 in Kallenberg (2002, p. 6). Consequently, we can apply Lemma 4.6 to obtain that N is an

F-adapted integer-valued random measure. The main goal of the next steps is to show that T∞ =∞ a.s.

Second, following Proposition 4.11, we can see that supm∈M λ(ω, t,m) < ∞ for all t ∈ R>0, ω ∈ Ω.

Hence, by Lemma 4.9, there exists and almost sure event G ∈ F on which N({t} ×M }) ≤ 1 for all t ∈ R.

Let Ñ , (Ñn)n∈N, (T̃n)n∈N and T̃∞ coincide with N , (Nn)n∈N, (Tn)n∈N and T∞ on G. Outside G, set Ñ := 0,

Ñn := 0, T̃n :=∞, for all n ∈ N, and T̃∞ :=∞. Define the random measures on R

ÑM (·) := Ñ(· ×M ), ÑM ,n(·) := Ñn(· ×M ), n ∈ N,

and define the process

λ̃(ω, t) := lim
n→∞

a(ÑM ,n(ω, (−∞, t)))1{t<T̃∞(ω)} = a(ÑM (ω, (−∞, t)))1{t<T̃∞(ω)}, ω ∈ Ω, t ∈ R>0.

Since {T̃n ≤ t} = {ÑM ((0, t]) ≥ n}, T̃n is in fact an FÑM -stopping time and, thus, reusing the argu-

ment in the first step, we have that 1{t<T̃∞} is FÑM -predictable. Moreover, by Lemma 3.4, we have that

(a(ÑM ,n((−∞, t))))t>0 is FÑM,n -predictable and, thus, FÑM -predictable. Hence, using again Lemma 1.9 in

Kallenberg (2002, p. 6), we have that λ̃ is also FÑM -predictable. Next, because Ñ = N a.s. and λ̃(t) = λ(t,m)

for all t ∈ R>0, m ∈M , a.s., and because Lemma 4.6 applies to N and λ, we have that, for any non-negative

FÑM -predictable process H : Ω× R>0 → R≥0,

E
[∫

R>0

H(t)ÑM (dt)

]
= E

[∫∫
R>0×M

H(t)N(dt, dm)

]
= E

[∫∫
R>0×M

H(t)λ(t,m)µM (dm)dt

]
= E

[∫
R>0

H(t)λ̃(t)µM (M )dt

]
.

Consequently, ÑM , or equivalently (T̃n)n∈N, defines a simple point process on R>0 with FÑM -predictable

projection (µM (M )
∫ t

0
λ̃(s)ds)t>0 in the sense of Jacod (1975).

Third, by Lemma 3.1, F ÑM
t = F ÑM

0 ∨ F Ñ
>0
M

t , and, thus, Assumption A.1 of Jacod (1975) holds, see

also the proof of Theorem 2.21 and Remark 4.17. Then, by Proposition 3.1 in Jacod (1975), we have that,

conditional on N≤0((−∞, 0]) = n0 ∈ N, Sn := T̃n+1 − T̃n, n ∈ N, follows an exponential distribution with

parameter a(n + n0)µM (M ) and the (Sn)n∈N are independent. Thanks to Assumption B.(ii), by Example

3.1.4 in Jacobsen (2006, p.20), we deduce that, conditional on N≤0((−∞, 0]) = n0, T̃∞ = limn→∞ T̃n = ∞
a.s., see also Proposition 12.19 in Kallenberg (2002, p.240). Consequently, it holds that T̃∞ = ∞ a.s.

unconditionally.

Fourth, following these first three steps, we have proved that there exists a version of N such that

N ∈ N#g
R×M , i.e., this version of N is a non-explosive marked point process, see Proposition 4.2, and such

that N solves the Poisson-driven SDE. We conclude by Corollary 4.8.

To prove Theorem 2.17 under Assumptions A, B and C in the general case, we will use a solution to the

special case ψ = ψ′ to show that the constructed mapping N : Ω→ N∞R×M actually takes values in N#g
R×M .

First, we need to define what we mean for a marked point process N to be dominated by another marked

point process N .
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Definition 4.14. Let ξ, ξ ∈ N∞R×M . We say that ξ is dominated by ξ and write ξ ≺ ξ if, for all A ∈ B(R×M ),

ξ(A) ≤ ξ(A). Let T ∈ R. We say that ξ is dominated by ξ on (−∞, T ] if θT ξ
≤0 ≺ θT ξ

≤0
. Consider two

mappings N : Ω→ N∞R×M and N : Ω→ N∞R×M . We say that N is dominated by N if N ≺ N a.s.

When N ≺ N a.s., one could also say that N is a thinning of N . Indeed, notice that ξ ≺ ξ implies that all

the atoms of ξ are also atoms of ξ.

We will now show that the constructed mapping N : Ω → N∞R×M is dominated by any solution to the

special case ψ = ψ′.

Proposition 4.15. Let N ′ : Ω→ N#g
R×M be a solution to the Poisson-driven SDE with intensity functional

ψ′. Then, under Assumptions A, B.(i) and C, the mapping N : Ω → N∞R×M obtained from Algorithm 4.10

satisfies N ≺ N ′ a.s.

Proof. Fix ω = (ω≤0, ω>0) ∈ A∩F1, where A ∈ F is the almost sure event that N ′ solves (2.11), where ψ is

replaced by ψ′. Clealry, we have that N(ω) ≺ N(ω) on (−∞, 0]. Now take any n ∈ N such that Tn(ω) <∞
and assume that N(ω) ≺ N ′(ω) on (−∞, Tn(ω)]. If Tn+1(ω) = ∞, then N(ω) is null on (Tn,∞) and we

have N(ω) ≺ N ′(ω). If Tn+1(ω) <∞, we have that for all t ∈ (Tn(ω), Tn+1(ω)], m ∈M ,

λ(ω, t,m) = ψ(m | θtN(ω)<0)

(by construction) = ψ(m | θtNn(ω)<0)

(by Assumption B.(i)) ≤ ψ′(m | θtNn(ω)<0)

(by the definition of ψ′, Assumption B and since Nn(ω) ≺ N ′(ω)) ≤ ψ′(m | θtN ′(ω)<0) =: λ′(ω, t,m).

By Proposition 4.12 for N(ω) and by assumption for N ′(ω), we have that N(ω) and N ′(ω) both satisfy

(2.11) on (−∞, Tn+1(ω)], where λ is replaced by λ′ for N ′(ω). Consequently, we must have N(ω) ≺ N ′(ω)

on (−∞, Tn+1(ω)]. As, by construction, N(ω) has mass on R>0 only at the times T1(ω) < T2(ω) < . . . <∞,

we have shown that N(ω) ≺ N ′(ω). This implies that N ≺ N ′ a.s.

This allows us to conclude the proof of Theorem 2.17 under Assumptions A, B and C.

Proof of Theorem 2.17, Part 2. Repeat the first step of Part 1. Then, by Proposition 4.15, we deduce that

N ∈ N#g
R×M and T∞ =∞ a.s. We then conclude by repeating the fourth step of Part 1.

4.2.2 Existence under Assumptions A, D, E. To prove Theorem 2.17 under Assumptions A, D and

E, we will also use Algorithm 4.10 to construct a candidate solution, but the almost sure event F1 needs

to be replaced by another almost sure event F2 that guarantees that the algorithm is well-defined under

these new assumptions. Whereas under Assumptions B and C, we were able to first construct the candidate

solution and then dominate it by a solution to the special case ψ = ψ′, here we will dominate the candidate

solution while constructing it. The dominating non-explosive marked point process is nothing else than a

solution to the Poisson-driven SDE with the Hawkes intensity functional

ψ : M ×N#
R×M → R>0 ∪ {∞}

(m, ξ) 7→ ψ(m | ξ) := λ0 +

∫∫
(−∞,0)×M

k(−t′,m′,m)ξ(dt′, dm′),

where λ0 and k are as in Assumption D. Indeed, by applying the results of Massoulié (1998) and Lemma

4.9, we can prove Theorem 2.17 under Assumptions A, D and E for the special case ψ = ψ.
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Proof of Theorem 2.17, Part 3. Clearly, ψ satisfies the Lipschitz condition (2.9) with the kernel k. Under

Assumptions A, D.(ii) and E.(i), by Theorem 2 of Massoulié (1998), we know that there exists a non-explosive

point process N : Ω→ N#
R×M that solves (2.11), where ψ is replaced by ψ, and such that N(· ×M ) ∈ N#

R .

Moreover, applying Assumptions D.(iii) and E.(ii), we obtain that

λ(ω, t,m) : = ψ(m | θtN(ω)<0) = λ0 +

∫∫
(−∞,t)×M

k(t− t′,m′,m)N(ω, dt′, dm′)

≤ λ0 + λ̃≤0(ω≤0, t) +

∫∫
(0,t)×M

sup
m′′∈M

k(t− t′,m′,m′′)N(ω, dt′, dm′)

<∞, ω ∈ Ω, t ∈ R>0,m ∈M ,

which proves that supm∈M λ(t,m) < ∞, for all t ∈ R>0, a.s. Hence, by Lemma 4.9, we conclude that N

admits a version such that N(ω) ∈ N#g
R×M , ω ∈ Ω, meaning that this version solves the Poisson-driven SDE.

Conclude by Corollary 4.8.

From now on, denote by N a solution to the Poisson-driven SDE in the special case ψ = ψ and by

F2 ∈ F the almost sure event that N solves (2.11), where ψ is replaced by ψ. The following statement is

the analogue of Proposition 4.11 and ensures that Algorithm 4.10 is well-defined under this different set of

assumptions.

Proposition 4.16. In Algorithm 4.10, where F1 is replaced by F2, under Assumptions A, D and E, we have

that, for every ω ∈ F2, card(Mn(ω)) ≤ 1, Nn(ω) ≺ N(ω), for all n ∈ N, and{
u > Tn(ω) :

∫∫
(Tn(ω),u)×M

∫
(0,λn(ω,t,m)]

M(ω, dt, dm, dz) = 0

}
6= ∅ for all n ∈ N s.t. Tn(ω) <∞.

Hence, Algorithm 4.10 is well-defined under these assumptions.

Proof. We show the assertion by induction. Take any ω = (ω≤0, ω>0) ∈ F2. Let n ∈ N and, for all i ∈ N
such that i < n and Ti(ω) <∞, assume that{

u > Ti(ω) :

∫∫
(Ti(ω),u)×M

∫
(0,λi(ω,t,m)]

M(ω, dt, dm, dz) = 0

}
6= ∅. (4.10)

For all i ∈ N such that i ≤ n, assume that Ni(ω) ≺ N . If Tn(ω) =∞, then, by construction, this is also true

for n+ 1.

Now, assume that Tn(ω) < ∞. We first show that (4.10) holds also for i = n. By adapting the proof

of Proposition 4.15 and using Assumption D.(i), we get that λn(ω, t,m) ≤ λ(ω, t,m), for all t > Tn(ω),

m ∈M . Hence, for any ε > 0, we have that∫∫
(Tn(ω),Tn(ω)+ε)×M

∫
(0,λn(ω,t,m)]

M(ω, dt, dm, dz) ≤
∫∫

(Tn(ω),Tn(ω)+ε)×M

∫
(0,λ(ω,t,m)]

M(ω, dt, dm, dz)

= N(ω, (Tn(ω), Tn(ω) + ε)×M ) =: Un(ω, ε) <∞,

since N(ω, · ×M ) ∈ N#
R . If Un(ω, ε) = 0, then clearly (4.10) is satisfied for i = n. If not, N(ω, · ×M ) has

a finite number of points in (Tn(ω), Tn(ω) + ε) and there exists 0 < ε′ < ε such that Un(ω, ε′) = 0, in which

case (4.10) is again satisfied for i = n.
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Second, we show that card(Mn+1) ≤ 1 and Nn+1(ω) ≺ N(ω). If Tn+1(ω) = ∞, then this is immediate.

If not, as λn(ω, t,m) ≤ λ(ω, t,m), for all t > Tn(ω), it is enough to notice that

Mn+1(ω) : = {m ∈M : M(ω, {Tn+1(ω)} × {m} × (0, λn(ω, Tn+1(ω),m)]) > 0}

⊂
{
m ∈M : M(ω, {Tn+1(ω)} × {m} × (0, λ(ω, Tn+1(ω),m)]) > 0

}
=
{
m ∈M : N(ω, {Tn+1(ω)} × {m}) > 0

}
≤ 1,

since N(ω) ∈ N#g
R×M . As we already know that Nn(ω) ≺ N(ω), looking at (4.3) and observing that Nn+1(ω)

and Nn(ω) only differ by a mass at time Tn+1(ω), we further deduce that Nn+1(ω) ≺ N(ω).

Regarding the basis of this induction, it is immediate that N0(ω) ≺ N(ω) since N0(ω) = N≤0(ω≤0) =

N
≤0

(ω).

We are now in a position to finish the proof of Theorem 2.17 under Assumption A, D and E.

Proof of Theorem 2.17, Part 4. Let N : Ω → N∞R×M be given by Algorithm 4.10 under Assumptions A, D

and E, where F1 is replaced by F2. By Proposition 4.16, this mapping is well defined. Moreover, we notice

that Propositions 4.12 and 4.13 still hold under the present assumptions. Hence, we can repeat the first

step of Part 1 of the proof. By Proposition 4.16, we know that Nn(ω) ≺ N(ω) for all ω ∈ F2, which implies

by construction that N(ω) ≺ N(ω) on R>0 for all ω ∈ Ω. Consequently, we have that N(ω) ∈ N#g
R×M and

T∞(ω) = ∞ for all ω ∈ Ω, which implies that N solves the Poisson-driven SDE. We conclude again by

Corollary 4.8.

4.3 Strong and weak uniqueness

Proof of Theorem 2.20. Let Ω̃ ∈ F be the almost sure event that both N and N ′ solve (2.11). Let

(Tn,Mn)n∈N and (T ′n,M
′
n)n∈N be the enumerations in (0,∞]×M to which N and N ′ are respectively equiv-

alent. Now fix arbitrary ω ∈ Ω̃. We show by strong induction that Tn(ω) = T ′n(ω) and Mn(ω) = M ′n(ω) for

all n ∈ N.

Let n ∈ N and assume that Ti(ω) = T ′i (ω) and Mi(ω) = M ′i(ω) for all i = 1, . . . , n− 1. By contradiction,

assume that Tn(ω) 6= T ′n(ω) and, moreover, without loss of generality, that Tn(ω) < T ′n(ω). Then, this

implies that

N(ω, (0, Tn(ω)]×M ) =

∫
(0,Tn(ω)]

∫
M

∫
(0,λ(ω,t,m)]

M(ω, dt, dm, dz) = n,

N ′(ω, (0, Tn(ω)]×M ) =

∫
(0,Tn(ω)]

∫
M

∫
(0,λ′(ω,t,m)]

M(ω, dt, dm, dz) = n− 1,

where λ(ω, t,m) = ψ(m | θtN(ω)<0) and λ′(ω, t,m) = ψ(m | θtN ′(ω)<0). But since N(ω)≤0 = N ′(ω)≤0 and

also Ti(ω) = T ′i (ω) and Mi(ω) = M ′i(ω) for all i = 1, . . . , n− 1, we have that θtN(ω)<0 = θtN
′(ω)<0 for all

t ≤ Tn(ω) and, thus, λ(ω, t,m) = λ′(ω, t,m) for all t ≤ Tn(ω),m ∈M . This implies that n = n− 1 which is

a contradiction and, thus, necessarily, Tn(ω) = T ′n(ω).

Similarly, if we assume that Mn(ω) 6= M ′n(ω), then this implies that

N(ω, {Tn(ω)} × {Mn(ω)}) =

∫
{Tn(ω)}

∫
{Mn(ω)}

∫
(0,λ(ω,t,m)]

M(ω, dt, dm, dz) = 1,

N ′(ω, {Tn(ω)} × {Mn(ω)}) =

∫
{Tn(ω)}

∫
{Mn(ω)}

∫
(0,λ′(ω,t,m)]

M(ω, dt, dm, dz) = 0.
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But again, since λ(ω, t,m) = λ′(ω, t,m) for all t ≤ Tn(ω),m ∈ M , this leads to the contradiction 1 = 0

and, thus, it follows that Mn(ω) = M ′n(ω). The same reasoning allows us to prove the basis of the strong

induction (i.e., to show that T1(ω) = T ′1(ω) and M1(ω) = M ′1(ω)).

Proof of Theorem 2.21. Consider the canonical measurable space (N#g
R×M ,B(N#g

R×M )), where B(N#g
R×M ) =

N#g
R×M ∩ B(N#

R×M ), and the canonical non-explosive marked point process N defined by N(ω) = ω for all

ω ∈ N#g
R×M . Under both PN1 and PN2 (they only charge N#g

R×M ), N satisfies the weak initial condition N≤0

and admits an intensity given by (2.2). We will now apply Theorem 3.4 in Jacod (1975, p. 242) to show that

PN1 = PN2 . By Lemma 3.1, we have that

FNt = FN0 ∨ F
θ0N

>0

t = FN
≤0

0 ∨ FN
>0

t , t ∈ R≥0,

and thus, Assumption A.1 of Jacod (1975) is satisfied (see Remark 4.17).

To apply Theorem 3.4 in Jacod (1975), it remains to verify that the restrictions of PN1 and PN2 coincide

on FN0 . Note that FN0 is generated by the π-system C of sets of the form

{N ∈ N#g
R×M : N(A1 ×M1) ≥ n1, . . . , N(Ak ×Mk) ≥ nk}, n1, . . . , nk ∈ N, k ∈ N,

where A1, . . . , Ak,∈ B(R≤0) and M1, . . . ,Mk ∈ B(M ). For any such set F ∈ C, setting Bi := Ai ×Mi for

i = 1, . . . , k and invoking the fact that both N1 and N2 satisfy the weak initial condition N≤0, we deduce

that

PN1(F ) = PN1(N(B1) ≥ n1, . . . , N(Bk) ≥ nk) = PN1(N≤0(B1) ≥ n1, . . . , N
≤0(Bk) ≥ nk)

= PN≤0(N≤0(B1) ≥ n1, . . . , N
≤0(Bk) ≥ nk) = PN2(N≤0(B1) ≥ n1, . . . , N

≤0(Bk) ≥ nk)

= PN2(N(B1) ≥ n1, . . . , N(Bk) ≥ nk) = PN2(F ).

Hence, PN1 and PN2 coincide on C, a π-system that contains N#g
R×M . As a consequence, PN1 = PN2 on

FN0 , see for example Lemma 1.17 in Kallenberg (2002, p. 9), and we can apply Theorem 3.4 in Jacod (1975,

p. 242) to deduce that PN1 = PN2 on (N#g
R×M ,B(N#g

R×M )).

Remark 4.17. Let us clarify the relationship between our notations and those in Jacod (1975). Our

canonical measurable space (N#g
R×M ,B(N#g

R×M )) plays the role of his measurable space (Ω,F∞). Our marked

point process N>0 corresponds to his marked point process µ. Our probability measures PN1 and PN2 are

the counterparts of P and P ′, respectively. Our filtrations FN and FN>0

correspond to his filtrations (Ft)t≥0

and (Gt)t≥0, respectively.

A Appendix

A.1 The subspace N#g
R×M is Borel

The following result is unlikely to be original, but we could not find it in Daley and Vere-Jones (2008).

Lemma A.1.1. The set N#g
R×M is a Borel subset of N#

R×M , that is N#g
R×M ∈ B(N#

R×M ).

Proof. For all n ∈ N, define the sets

Fn :=
{
ξ ∈ N#

R×M : ξ([−n, n]×M ) <∞, ξ({t} ×M ) ≤ 1 for all t ∈ [−n, n]
}
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and notice that N#g
R×M =

⋂
n∈N Fn. Next, let n ∈ N. By Proposition A2.1.IV in Daley and Vere-Jones

(2003, p. 385), the interval [−n, n] contains a dissecting system ((Aij)j∈{1,...,ji})i∈N where Aij ∈ B(R) for

any j ∈ {1, . . . , ji} and i ∈ N, see Definition A1.6.1 in Daley and Vere-Jones (2003, p. 382). We show that

Fn =

{
ξ ∈ N#

R×M : ξ([−n, n]×M ) <∞, lim sup
i→∞

sup
j∈{1,...,ji}

ξ(Aij ×M ) ≤ 1

}
=: Gn.

Let ξ ∈ Fn. Then ξ(· ×M ) has finitely many atoms t1, . . . , tp in [−n, n] for some p ∈ N number p ∈ N
and their mass cannot exceed one. A key property of the dissecting system is that, for each pair of distinct

atoms tq1 and tq2 with q1 6= q2, there exists n(q1, q2) ∈ N such that, for all i > n(q1, q2), tq1 ∈ Aij implies

tq2 /∈ Aij . Thus, define

i∗ := max
q1,q2∈{1,...,p}, q1 6=q2

n(q1, q2)

and then, ξ(Aij ×M ) ≤ 1 for all j ∈ {1, . . . , ji} and i > i∗, which implies that

lim sup
i→∞

sup
j∈{1,...,ji}

ξ(Aij ×M ) ≤ 1,

which in turn indicates that ξ ∈ Gn. Now, let ξ ∈ Gn and t ∈ [−n, n]. Another salient property of the

dissecting system is that there exists a sequence (ji)i∈N such that ξ({t} ×M ) = limi→∞ ξ(Aiji ×M ). But

since ξ ∈ Gn, we have that

ξ({t} ×M ) = lim
i→∞

ξ(Aiji ×M ) ≤ lim sup
i→∞

sup
j∈{1,...,ji}

ξ(Aij ×M ) ≤ 1,

which means that ξ ∈ Fn. Now that we have shown that Fn = Gn, we invoke Theorem A2.6.III in

Daley and Vere-Jones (2003, p. 404) to deduce that ξ 7→ ξ([−n, n] ×M ) and ξ 7→ ξ(Aij ×M ), for any

j ∈ {1, . . . , ji} and i ∈ N, are measurable and use Lemma 1.9 in Kallenberg (2002, p. 6) to conclude that

ξ 7→ lim supi→∞ supj∈{1,...,ji} ξ(Aij ×M ) is measurable. It then follows that Fn ∈ B(N#
R×M ), whence

N#g
R×M =

⋂
n∈N Fn ∈ B(N#

R×M ).

A.2 Measurability and continuity properties of shifts and resitrictions

From Daley and Vere-Jones (2008, p. 178, Lemma 12.1.I), we know the shift operators are continuous

under the w#-topology. We are able to go further and show that θtξ is actually jointly continuous in ξ and t.

We also prove that taking the restriction to the positive or negative real line of a boundedly finite measure

is a measurable operation. Moreover, we show that θtξ
<0 is left-continuous as a function of t ∈ R for any

ξ ∈ N#
U , which is crucial in our proof that an intensity functional applied to the history of a point process

generates a predictable process (Lemma 3.4). Before giving the formal statements, we define some notations.

Recall that d# is the w#-distance (Daley and Vere-Jones, 2003, p. 403) on the space N#
U . The open ball

with centre u ∈ U and radius r is denoted by Br(u). For any subset A ⊂ U and ε > 0, the ε-neighbourhood

of A is defined by Aε :=
⋃
a∈ABε(a) and the boundary of A is denoted by ∂A.

Lemma A.2.1. When N#
R×U is equipped with the w#-distance d# and N#

R×U×R is equipped with the product

metric, the mapping

N#
R×U × R→ N#

R×U

(ξ, t) 7→ θtξ

is continuous.
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Proof. Let ξ ∈ N#
R×U , t ∈ R and let (ξn, tn)n∈N be a sequence in N#

R×U × R such that d#(ξn, ξ) → 0 and

tn → t as n → ∞. By Proposition A2.6.II in Daley and Vere-Jones (2003, p. 403), it is enough to show

that ξn(A + tn) → ξ(A + t) as n → ∞ for any bounded A ∈ B(R × U) such that ξ(∂(A + t)) = 0. For

such a set A, which we can assume without loss of generality to be non-empty, there exists δ > 0 such that

B2δ(an) ⊂ (A+ t) and ξ(∂Bδ(an)) = 0, n = 1, . . . , N , where a1, . . . , aN are the atoms of ξ in A+ t, and such

that ξ((A+ t)δ) = ξ(A+ t) with ξ(∂((A+ t)δ)) = 0. Introduce the two bounded sets

S1 := (A+ t)δ \ (A+ t) and S2 := (A+ t) \

(
N⋃
n=1

Bδ(an)

)

and notice that ξ(S1) = ξ(S2) = ξ(∂S1) = ξ(∂S2) = 0. Since d#(ξn, ξ) → 0 as n → ∞, we have that

ξn(S1) = ξn(S2) = ξn(∂S1) = ξn(∂S2) = 0 for n large enough. This implies that, for n large enough, all

the atoms of ξn in (A + t)δ actually lie in (A + t) and their distance to the boundary of (A + t) is bigger

than δ (all the atoms are in the balls Bδ(an)). This means that, for n large enough, ξn((A+ t) \ (A+ s)) =

ξn((A+ s) \ (A+ t)) = 0 for all s ∈ R such that |t− s| < δ, implying that ξn(A+ t) = ξn(A+ s) for all such

n and s. But for n large enough, we also have that |tn − t| < δ and ξn(A+ t) = ξ(A+ t), which finally gives

that, for such large enough n,

ξn(A+ tn) = ξn(A+ t+ (tn − t)) = ξn(A+ t) = ξ(A+ t).

Lemma A.2.2. The restrictions ξ<0, ξ≤0, ξ>0 and ξ≥0 are measurable mappings from N#
R×U into itself.

Proof. We prove the assertion for ξ<0, the other three restrictions can be treated similarly. Consider the

function f : N#
R×U 3 ξ 7→ ξ<0 ∈ N#

R×U . Remember that, by Theorem A2.6.III in Daley and Vere-Jones

(2003, p. 404), the Borel σ-algebra B(N#
R×U ) is generated by the sets

FA,n := {ξ ∈ N#
R×U : ξ(A) ∈ [n,∞]}, A ∈ B(N#

R×U ), n ∈ R.

Since

f−1(FA,n) = {ξ ∈ N#
R×U : ξ(A ∩ R<0 × U) ∈ [n,∞]} ∈ B(N#

R×U ),

we conclude that f is measurable by Lemma 1.4 in Kallenberg (2002, p. 4).

Lemma A.2.3. Let ξ ∈ N#
R×U . Then the mapping

R→ N#
R×U

t 7→ (θtξ)
<0

is left continuous when N#
R×U is equipped with the w#-distance d#.

Proof. Fix t ∈ R and take any non-decreasing sequence (tn)n∈N in R such that tn ↑ t as n → ∞. By

Proposition A2.6.II in Daley and Vere-Jones (2003, p. 403), it is enough to show that (θtnξ)
<0(A) →

(θtξ)
<0(A) as n → ∞ for all bounded A ∈ B(R × U) such that (θtξ)

<0(∂A) = 0. Clearly, it suffices to

consider bounded Borel sets A such that A ⊂ R<0 × U . First, consider the case where ∂A ⊂ R<0 × U . This

implies that

(θtξ)(∂A) = (θtξ)
<0(∂A) = 0.
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By Lemma A.2.1, and using again the characterisation of Proposition A2.6.II in Daley and Vere-Jones (2003,

p. 403), this implies that

(θtnξ)
<0(A) = (θtnξ)(A)→ (θtξ)(A) = (θtξ)

<0(A), n→∞.

Second, consider the remaining case where ∂A ∩ {0} × U 6= ∅. Then, (θtξ)
<0(∂A) = 0 does not imply

anymore that (θtξ)(∂A) = 0. However, let ξ− be the measure ξ that omits all atoms with time coordinate t.

Then, for this measure ξ−, we have again that

(θtξ−)(∂A) = (θtξ)
<0(∂A) = 0.

Since tn ≤ t, and adapting the preceding argument for ξ−, we finally find that

(θtnξ)
<0(A) = (θtnξ)(A) = (θtnξ−)(A)→ (θtξ−)(A) = (θtξ)

<0(A), n→∞.

A.3 Enumeration representation of marked point processes

The following result confirms that a non-explosive enumeration in R>0 ×M corresponds indeed to a

non-explosive marked point process.

Lemma A.3.1. Let (Tn,Mn)n∈N be an enumeration in R>0×M such that limn→∞ Tn =∞ a.s. Let F ∈ F
be the almost sure event that limn→∞ Tn =∞ and define

N(ω) :=


∑
n δ(Tn(ω),Mn(ω))1{Tn(ω)<∞}, if ω ∈ F,

0, if ω /∈ F.

Then, N defines a non-explosive marked point process on R≥0 ×M .

Proof. By Proposition 9.1.X in Daley and Vere-Jones (2008, p. 13), N defines a non-explosive point process

on R≥0 ×M . Moreover, the monotonicity of the sequence (Tn)n∈N implies that N({t} ×M ) = 0 or 1 for

all ω ∈ Ω. Also, using that limn→∞ Tn = ∞ on F , notice that N(ω,A ×M ) < ∞, for every bounded set

A ∈ B(R≥0), for all ω ∈ Ω. This means that N ∈ N#g
R≥0×M and, thus, N defines a non-explosive marked

point process.

Conversely, every non-explosive marked point process generates an enumeration.

Lemma A.3.2. Let N be a non-explosive marked point process on R≥0×M such that N({0}×M ) = 0 a.s.

Define the sequence (Tn)n∈N by Tn := sup{t > 0 : N((0, t) ×M ) ≤ n}. Then (Tn)n∈N is a non-decreasing

sequence of random variables in (0,∞]. Moreover, for each n ∈ N, on {Tn <∞}, one can define Mn as the

unique element in M such that N({Tn} × {Mn}) > 0. On {Tn =∞}, simply set Mn = m∞ for some fixed

m∞ ∈M . Then, (Tn,Mn)n∈N is an enumeration in R≥0 ×M such that

N =
∑
n∈N

δ(Tn,Mn)1{Tn<∞} (A.1)

and limn→∞ Tn(ω) =∞ for all ω ∈ Ω.

Proof. We proceed in several steps.
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(i) For each n ∈ N, the mapping ω 7→ Tn(ω) is measurable. Indeed, notice that {Tn < t} = {N((0, t) ×
M ) > n}. Then recall that, by Theorem A2.6.III in Daley and Vere-Jones (2003, p. 404), N#

R≥0×M 3
ξ 7→ ξ((0, t) ×M ) is measurable and, thus, as a composition (Kallenberg, 2002, Lemma 1.7, p. 5),

the mapping ω 7→ N(ω, (0, t) ×M ) is measurable. Consequently, {Tn < t} ∈ F . We conclude using

Lemma 1.4 in Kallenberg (2002, p. 4) that the mapping ω 7→ Tn(ω) is measurable.

(ii) Using the fact that the ground measure is simple, Tn <∞ implies that Tn < Tn+1. Also, it is easy to

check that when Tn = ∞, then Tn+1 = ∞. Hence, (Tn)n∈N is sequence of random variables in (0,∞]

satisfying the monotonicity of an enumeration.

(iii) For each n ∈ N, the mapping ω 7→Mn(ω) is well defined (using again the fact that the ground measure

is simple). Also, this mapping is measurable. Indeed, let A ∈ B(M ) and consider the most delicate

case where m∞ ∈ A. Notice that

{Mn ∈ A} = ({Tn <∞} ∩ {N({Tn} ×A) > 0}) ∪ {Tn =∞}.

Based on what we have seen so far, we know that {Tn = ∞} ∈ F . Therefore, it suffices to show that

the set {Tn <∞} ∩ {N({Tn} ×A) > 0} is measurable. To this end, notice that

{Tn <∞} ∩ {N({Tn} ×A) > 0} = {Tn <∞} ∩ {θTn
N({0} ×A) > 0},

where θTn
is the shift operator defined in Subsection 2.1.6. Then, by Lemma A.2.1, we know that

the mapping N#
R≥0×M × R≥0 3 (ξ, t) 7→ θtξ ∈ N#

R≥0×M is continuous and thus, by Lemma 1.5 in

Kallenberg (2002, p. 4), measurable. Also, by Lemma 1.8 in Kallenberg (2002, p. 5), the mapping

ω 7→ (N(ω), Tn(ω)) is measurable, and thus, as a composition (Kallenberg, 2002, Lemma 1.7, p. 5),

the mapping ω 7→ θTn(ω)N(ω) is measurable. Using again Theorem A2.6.III in Daley and Vere-Jones

(2003, p. 404), we conclude that {Tn < ∞} ∩ {θTn
N({0} × A) > 0} ∈ F and, thus, the mapping

ω 7→Mn(ω) is measurable. So far, these first three steps establish that (Tn,Mn)n∈N is an enumeration.

Moreover, (A.1) holds by construction.

(iv) Since N(· ×M ) ∈ N#
R≥0

, we have that limn→∞ Tn(ω) =∞ for all ω ∈ Ω.

Remark A.3.3. On the one hand, Lemma A.3.1 gives us a mapping that generates a non-explosive marked

point process out of a non-explosive enumeration. One can see that if two non-explosive enumerations are not

almost surely equal, then the corresponding non-explosive marked point processes cannot be almost surely

equal either. In other words, the mapping of Lemma A.3.1 is injective. On the other hand, Lemma A.3.2

tells us that this mapping is surjective. As a consequence, the above two lemmas tell us that non-explosive

enumerations and non-explosive marked point processes are two equivalent ways of looking at the same

object.

A.4 Hawkes functionals

One can generalise the multivariate linear Hawkes processes presented in the introduction by defining

Hawkes functionals as intensity functionals ψ : M ×N#
R×M → R≥0 ∪ {∞} of the form

ψ(m | ξ) = ν(m) +

∫∫
(−∞,0)×M

k(−t′,m′,m)ξ(dt′, dm′), m ∈M , ξ ∈ N#
R×M , (A.2)
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where ν : M → R≥0 and k : R×M ×M → R≥0 are non-negative measurable functions. We show that such

event functionals are measurable, so that they are admissible in our framework.

Proposition A.4.1. Hawkes functionals of the form (A.2) are jointly measurable in m ∈M and ξ ∈ N#
U .

Proof. It will be enough to show that the integral term in (A.2), now denoted by I(m, ξ), is measurable as

a function of m ∈ E and ξ ∈ N#
R×M . First, consider the functions k of the form k(t′,m′,m) = 1S(t′,m′,m)

where S ∈ B(R×M ×M ) and let C be the class of sets S ∈ B(R×M ×M ) such that (m, ξ) 7→ I(m, ξ) is

measurable. By monotone convergence, the class C is a monotone class (i.e., it is closed under monotonically

increasing sequences). Denote by R the class of sets of the form
⋃n
i=1Ai ×M ′i ×Mi where Ai ∈ B(R),

M ′i ∈ B(M ), Mi ∈ B(M ), n ∈ N. This class forms a ring (i.e., it is closed under finite intersections

and symmetric differences). Indeed, the difference of unions of Cartesian products is a union of Cartesian

product. Moreover, since any union of Cartesian products can be decomposed as a union of disjoint Cartesian

products, we have that R ⊂ C. Indeed, by Theorem A2.6.III in Daley and Vere-Jones (2003, p. 404), for any

A ∈ B(R), M ′ ∈ B(M ), M ∈ B(M ), the function

(m, ξ) 7→
∫∫

(−∞,0)×M

1A(−t′)1M ′(m′)1M (m)ξ(dt′, dm′) = 1M (m)ξ((−A) ∩ (−∞, 0)×M ′)

is measurable. Then, by the monotone class theorem (Daley and Vere-Jones, 2003, p. 369), we have that

B(R×M ×M ) = σ(R) ⊂ C. The linearity of the integral implies that (m, ξ) 7→ I(m, ξ) is measurable for all

simple functions k and, by monotone convergence, for all non-negative measurable functions k (Kallenberg,

2002, Lemma 1.11, p. 7).
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