257 research outputs found

    First-principles study of adsorption, diffusion, and charge stability of metal adatoms on alkali halide surfaces

    Get PDF
    In this work we have performed first-principles calculations based on the spin-polarized density-functional theory for the adsorption and diffusion of Au, Ag, and Pb atoms on NaCl(001), KCl(001), and KBr(001) surfaces. We consider also the influence of adatom charge on the adsorption and diffusion. In order to characterize the different systems we explicitly calculate charge transfer between surface and adatom and consider the relative stability of the various charge states. Our results show that in general, apart from positively charged systems, the adatoms are weakly bound to the surface via orbital polarization and ionic interactions, and relatively little charge transfer occurs. Au and Ag adatoms are highly mobile on all surfaces, although they can be pinned by removal of an electron. In contrast, Pb adatoms are fairly immobile, and their mobility increases upon charging. Analysis of the charge stability suggests that Ag offers the potential of charge controlled mobility on insulators.Peer reviewe

    Nanoscale density fluctuations in swift heavy ion irradiated amorphous SiO2

    Get PDF
    We report on the observation of nanoscale density fluctuations in 2 μm thick amorphous SiO₂ layers irradiated with 185 MeV Au ions. At high fluences, in excess of approximately 5 × 10¹² ions/cm², where the surface is completely covered by ion tracks, synchrotron small angle x-ray scattering measurements reveal the existence of a steady state of density fluctuations. In agreement with molecular dynamics simulations, this steady state is consistent with an ion track “annihilation” process, where high-density regions generated in the periphery of new tracks fill in low-density regions located at the center of existing tracks.The authors acknowledge the Australian Research Council and the Australian Synchrotron Research Program for financial support and thank the staff at the ANU Heavy Ion facility for their continued technical assistance. O.P., F.D., and K.N. acknowledge financial support from the Academy of Finland under its Centre of Excellence program as well as the OPNA project, and grants of computer capacity from CSC

    High-resolution scanning force microscopy of gold nanoclusters on the KBr (001) surface

    Get PDF
    In this study we use a combination of dynamic scanning force microscopy experiments and first-principles simulations to study the imaging process of gold nanoclusters adsorbed on the (001) surface of KBr. In previous experiments atomic resolution was readily obtained on the KBr substrate. However, it was not possible to resolve atoms within the clusters themselves. This correlates with imaging simulations we present here using several different probable tip models: measurable contrast was readily achieved on the KBr surface and on the gold (001) surface, but simulations on the clusters demonstrated poor contrast for all tips. We further consider the role of cluster charging in the tip-surface interaction, and the role that surface defects play in the properties of adsorbed clusters.Peer reviewe

    The so-called dry laser cleaning governed by humidity at the nanometer scale

    Get PDF
    Illumination with single nanosecond pulses leads to the detachment of silica particles with 250nm radii from siliconsurfaces. We identify two laser-energy dependent cleaning regimes by time-of-flight particle-scattering diagnostics. For the higher energies, the ejection of particles is produced by nanoscale ablation due to the laser field enhancement at the particle-surface interface. The damage-free regime at lower energy is shown to be governed by the residual water molecules, which are inevitably trapped on the materials. We discuss the great importance that the humidity plays on the cleaning force and on the adhesion in the experiments.Peer reviewe

    Simulating atomic force microscopy imaging of the ideal and defected TiO2 (110) surface

    Get PDF
    In this study we simulate noncontact atomic force microscopy imaging of the TiO2 (110) surface using first-principles and atomistic methods. We use three different tip models to investigate the tip-surface interaction on the ideal surface, and find that agreement with experiment is found for either a silicon tip or a tip with a net positive electrostatic potential from the apex. Both predict bright contrast over the bridging oxygen rows. We then study the interaction of this tip with a bridging oxygen vacancy on the surface, and find that the much weaker interaction observed would result in vacancies appearing as dark contrast along the bright rows in images.Peer reviewe

    Role of van der Waals forces in the adsorption and diffusion of organic molecules on an insulating surface

    Get PDF
    The adsorption and diffusion of 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) molecules on a nanostructured KBr (001) surface were investigated by combining noncontact atomic force microscopy (NC-AFM) and first-principles calculations. Atomically resolved measurements demonstrate trapping of PTCDA molecules in intentionally created rectangular monolayer-deep substrate pits and a preferential adsorption at kink sites. In order to understand the experimental results, we found that it was essential to include a first-principles treatment of the van der Waals interactions. We show that at some sites on the surface, 85% of the molecular binding is provided by van der Waals interactions, and in general it is always the dominant contribution to the adsorption energy. It also qualitatively changes molecular diffusion on the surface. Based on the specificity of the molecular interaction at kink sites, the species of the imaged ionic sublattice in the NC-AFM measurements could be identified.Peer reviewe

    Atomic dynamics in evaporative cooling of trapped alkali atoms in strong magnetic fields

    Get PDF
    We investigate how the nonlinearity of the Zeeman shift for strong magnetic fields affects the dynamics of rf field induced evaporative cooling in magnetic traps. We demonstrate for the 87-Rb and 23-Na F=2 trapping states with wave packet simulations how the cooling stops when the rf field frequency goes below a certain limit (for the 85-Rb F=2 trapping state the problem does not appear). We examine the applicability of semiclassical models for the strong field case as an extension of our previous work [Phys. Rev. A 58, 3983 (1998)]. Our results verify many of the aspects observed in a recent 87^{87}Rb experiment [Phys. Rev. A 60, R1759 (1999)].Comment: 9 pages, RevTex, eps figures embedde

    Towards chemical identification in atomic-resolution noncontact AFM imaging with silicon tips

    Get PDF
    In this study we use ab initio calculations and a pure silicon tip to study the tip-surface interaction with four characteristic insulating surfaces: (i) the narrow gap TiO2 (110) surface, (ii) the classic oxide MgO (001) surface, (iii) the ionic solid CaCO3 (101ÂŻ4) surface with molecular anion, and (iv) the wide gap CaF2 (111) surface. Generally we find that the tip-surface interaction strongly depends on the surface electronic structure due to the dominance of covalent bond formation with the silicon tip. However, we also find that in every case the strongest interaction is with the highest anion of the surface. This result suggests that, if the original silicon tip can be carefully controlled, it should be possible to immediately identify the species seen as bright in images of insulating surfaces. In order to provide a more complete picture we also compare these results to those for contaminated tips and suggest how applied voltage could also be used to probe chemical identity.Peer reviewe

    Study of bound states in 12Be through low-energy 11Be(d,p)-transfer reactions

    Get PDF
    The bound states of 12Be have been studied through a 11Be(d,p)12Be transfer reaction experiment in inverse kinematics. A 2.8 MeV/u beam of 11Be was produced using the REX-ISOLDE facility at CERN. The outgoing protons were detected with the T-REX silicon detector array. The MINIBALL germanium array was used to detect gamma rays from the excited states in 12Be. The gamma-ray detection enabled a clear identification of the four known bound states in 12Be, and each of the states has been studied individually. Differential cross sections over a large angular range have been extracted. Spectroscopic factors for each of the states have been determined from DWBA calculations and have been compared to previous experimental and theoretical results

    Latent ion tracks in amorphous silicon

    Get PDF
    We present experimental evidence for the formation of ion tracks in amorphous Si induced by swift heavy-ion irradiation. An underlying core-shell structure consistent with remnants of a high-density liquid structure was revealed by small-angle x-ray scattering and molecular dynamics simulations. Ion track dimensions differ for as-implanted and relaxed Si as attributed to differentmicrostructures andmelting temperatures. The identification and characterization of ion tracks in amorphous Si yields new insight into mechanisms of damage formation due to swift heavy-ion irradiation in amorphous semiconductors
    • …
    corecore