2,675 research outputs found

    Constraints on models for the initial collision geometry in ultra relativistic heavy ion collisions

    Full text link
    Monte Carlo (MC) simulations are used to compute the centrality dependence of the collision zone eccentricities (ϔ2,4\epsilon_{2,4}), for both spherical and deformed ground state nuclei, for different model scenarios. Sizable model dependent differences are observed. They indicate that measurements of the 2nd2^{\text{nd}} and 4th4^{\text{th}} order Fourier flow coefficients v2,4v_{2,4}, expressed as the ratio v4(v2)2\frac{v_4}{(v_2)^2}, can provide robust constraints for distinguishing between different theoretical models for the initial-state eccentricity. Such constraints could remove one of the largest impediments to a more precise determination of the specific viscosity from precision v2,4v_{2,4} measurements at the Relativistic Heavy Ion Collider (RHIC).Comment: 4 pages, 3 figs - version accepted for publicatio

    Azimuthal anisotropy: transition from hydrodynamic flow to jet suppression

    Full text link
    Measured 2nd and 4th azimuthal anisotropy coefficients v_{2,4}(N_{part}), p_T) are scaled with the initial eccentricity \varepsilon_{2,4}(N_{part}) of the collision zone and studied as a function of the number of participants N_{part} and the transverse momenta p_T. Scaling violations are observed for p_T \alt 3 GeV/c, consistent with a pT2p_T^2 dependence of viscous corrections and a linear increase of the relaxation time with pTp_T. These empirical viscous corrections to flow and the thermal distribution function at freeze-out constrain estimates of the specific viscosity and the freeze-out temperature for two different models for the initial collision geometry. The apparent viscous corrections exhibit a sharp maximum for p_T \agt 3 GeV/c, suggesting a breakdown of the hydrodynamic ansatz and the onset of a change from flow-driven to suppression-driven anisotropy.Comment: 5 pages, 4 figs; submitted for publicatio

    A Large-scale Synthesis and Characterization of Quaternary CuInₓGa₁₋ₓS₂ Chalcopyrite Nanoparticles via Microwave Batch Reactions

    Get PDF
    Various quaternary CuInxGa1-xS2 (0≀x≀1) chalcopyrite nanoparticles have been prepared from molecular single-source precursors via microwave decomposition. We were able to control the nanoparticle size, phase, stoichiometry, and solubility. Depending on the choice of surface modifiers used, we were able to tune the solubility of the resulting nanoparticles. This method has been used to generate up to 5g of nanoparticles and up to 150g from multiple batch reactions with excellent reproducibility. Data from UV-Vis, photoluminescence, X-ray diffraction, TEM, DSC/TGA-MS, and ICP-OES analyses have shown high reproducibility in nanoparticle size, composition, and bandgap

    OpenMSCG: A Software Tool for Bottom-Up Coarse-Graining

    Get PDF
    The “bottom-up” approach to coarse-graining, for building accurate and efficient computational models to simulate large-scale and complex phenomena and processes, is an important approach in computational chemistry, biophysics, and materials science. As one example, the Multiscale Coarse-Graining (MS-CG) approach to developing CG models can be rigorously derived using statistical mechanics applied to fine-grained, i.e., all-atom simulation data for a given system. Under a number of circumstances, a systematic procedure, such as MS-CG modeling, is particularly valuable. Here, we present the development of the OpenMSCG software, a modularized open-source software that provides a collection of successful and widely applied bottom-up CG methods, including Boltzmann Inversion (BI), Force-Matching (FM), Ultra-Coarse-Graining (UCG), Relative Entropy Minimization (REM), Essential Dynamics Coarse-Graining (EDCG), and Heterogeneous Elastic Network Modeling (HeteroENM). OpenMSCG is a high-performance and comprehensive toolset that can be used to derive CG models from large-scale fine-grained simulation data in file formats from common molecular dynamics (MD) software packages, such as GROMACS, LAMMPS, and NAMD. OpenMSCG is modularized in the Python programming framework, which allows users to create and customize modeling “recipes” for reproducible results, thus greatly improving the reliability, reproducibility, and sharing of bottom-up CG models and their applications

    The Student Movement Volume 107 Issue 22: Fulfilled: AU Presents a Story of Redemption

    Get PDF
    HUMANS Speaking Up With Women, Interviewed by: Grace No What is it Like to Work at the Athletics Department?, Interviewed by: Grace No What is Title IX?. Interviewed by: Caryn Cruz ARTS & ENTERTAINMENT Currently: Foreign Film, Solana Campbell Fulfilled: A Musical of Redemption, Aiko J. Ayala Rios NEWS KASA Banquet, Interviewed by: Anna Pak Watchmen A Capella Concert: Unstoppable: A Journey Through Self-Discovery , Gloria Oh IDEAS Charge It!, Alexander Navarro Feminism is for Everybody. Yes-Even You, Dude!, Reagan McCain Tick Tock... for TikTok?, Abby Shim PULSE Dorm Delicacies, Melissa Moore How Have We Grown?, Abraham Bravo What Do We Wish We Did?, Abraham Bravo LAST WORD Take It From Me , SM Section Editorshttps://digitalcommons.andrews.edu/sm-107/1021/thumbnail.jp

    Estimated incidence of previously undetected atrial fibrillation on a 14-day continuous electrocardiographic monitor and associated risk of stroke

    Get PDF
    Aims There is uncertainty about whether and how to perform screening for atrial fibrillation (AF). To estimate the incidence of previously undetected AF that would be captured using a continuous 14-day ECG monitor and the associated risk of stroke. Methods and results We analysed data from a cohort of patients >65 years old with hypertension and a pacemaker, but without known AF. For each participant, we simulated 1000 ECG monitors by randomly selecting 14-day windows in the 6 months following enrolment and calculated the average AF burden (total time in AF). We used Cox proportional hazards models adjusted for CHA(2)DS(2)-VASc score to estimate the risk of subsequent ischaemic stroke or systemic embolism (SSE) associated with burdens of AF > and 6 min was 3.10% (95% CI 2.53-3.72). This was consistent across strata of age and CHA(2)DS(2)-VASc scores. Over a mean follow-up of 2.4 years, the rate of SSE among patients with 6 min of AF. Conclusions Approximately 3% of individuals aged >65 years with hypertension may have more than 6 min of AF detected by a 14-day ECG monitor. This is associated with a stroke risk of over 2% per year. Whether oral anticoagulation will reduce stroke in these patients is unknown

    On positivity of Ehrhart polynomials

    Full text link
    Ehrhart discovered that the function that counts the number of lattice points in dilations of an integral polytope is a polynomial. We call the coefficients of this polynomial Ehrhart coefficients, and say a polytope is Ehrhart positive if all Ehrhart coefficients are positive (which is not true for all integral polytopes). The main purpose of this article is to survey interesting families of polytopes that are known to be Ehrhart positive and discuss the reasons from which their Ehrhart positivity follows. We also include examples of polytopes that have negative Ehrhart coefficients and polytopes that are conjectured to be Ehrhart positive, as well as pose a few relevant questions.Comment: 40 pages, 7 figures. To appear in in Recent Trends in Algebraic Combinatorics, a volume of the Association for Women in Mathematics Series, Springer International Publishin
    • 

    corecore