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ABSTRACT: The “bottom-up” approach to coarse-graining, for building accurate and
efficient computational models to simulate large-scale and complex phenomena and
processes, is an important approach in computational chemistry, biophysics, and materials
science. As one example, the Multiscale Coarse-Graining (MS-CG) approach to developing
CG models can be rigorously derived using statistical mechanics applied to fine-grained, i.e.,
all-atom simulation data for a given system. Under a number of circumstances, a systematic
procedure, such as MS-CG modeling, is particularly valuable. Here, we present the
development of the OpenMSCG software, a modularized open-source software that
provides a collection of successful and widely applied bottom-up CG methods, including
Boltzmann Inversion (BI), Force-Matching (FM), Ultra-Coarse-Graining (UCG), Relative
Entropy Minimization (REM), Essential Dynamics Coarse-Graining (EDCG), and
Heterogeneous Elastic Network Modeling (HeteroENM). OpenMSCG is a high-
performance and comprehensive toolset that can be used to derive CG models from
large-scale fine-grained simulation data in file formats from common molecular dynamics (MD) software packages, such as
GROMACS, LAMMPS, and NAMD. OpenMSCG is modularized in the Python programming framework, which allows users to
create and customize modeling “recipes” for reproducible results, thus greatly improving the reliability, reproducibility, and sharing
of bottom-up CG models and their applications.

1. INTRODUCTION
Coarse-grained (CG) modeling and simulation has become
one of the most important methods for in silico studies of
complex phenomena across biology, chemistry, physics, and
materials science.1−4 CG models, in which each particle
represents a grouping of atoms at a lower resolution and with
reduced interactions and detail, can greatly extend the
achievable length and time scales of molecular dynamics
(MD) simulations compared to atomistic, or fine-grained
(FG), models. This allows for insights into collective behavior
and can improve the sampling of processes of interest in the
simulated system. Despite decades of significant theoretical
and methodological efforts, systematically developing accurate
and efficient CG models remains a challenge, especially from
the “bottom-up”, i.e., by an application2,4 of the principles of
statistical mechanics rather than through an alternative “top-
down” fitting of the CG model from certain properties.3,5,6

After the CG “sites” for a given system are defined from the
fine-grained model (also referred to as “mapping”), the central
task in CG modeling is to develop the effective interaction
force field, i.e., a set of energy functions and corresponding
parameters, for these CG sites. There are two fundamental
strategies for the development of CG force fields. The strategy
we focus on in this paper is the bottom-up approach, in which
the models and parameters are derived from microscopic
interaction data (e.g., collected from atomistic simulations)
using statistical mechanics.1,2,4 One of the most successful

methods using this bottom-up CG’ing strategy is the
Multiscale Coarse-Graining (MS-CG) method, which was
originally proposed by Izvekov and Voth7,8 and was then
further justified and generalized.9−11 In MS-CG modeling,
reference forces on CG sites are mapped from atomistic forces
collected from all-atom (AA) simulations, and the ensemble
average of the least-squares difference between the CG forces
and reference forces is variationally minimized, a process
sometimes referred to as “force-matching” (FM). (We note
that this widely used and somewhat unfortunate terminology
perhaps does not give the original MS-CG approach the credit
it deserves because the original MS-CG work is more of a force
“renormalization” from the FG resolution to the CG one; for
papers in which FM is used solely at the FG, all-atom level to
define an approximate force field from ab initio or other
higher-level data, see refs 12,13.) In fact, the MS-CG approach
can be viewed as an early form of machine learning (ML) in
which interactions at the CG level are derived from a fitting of
FG interactions to numerically renormalize and thereby
express them. Extended functionalities have also been
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developed for the MS-CG framework, such as three-body
nonbonded interactions,14,15 CG virtual site and center of
charge and mappings,16,17 and the (rather nontrivial) extension
of the MS-CG theory to quantum Boltzmann statistical
mechanics.18

Despite its successes, the conventional MS-CG approach,
which usually uses a pairwise numerically derived potential to
represent the interactions between pairs of CG sites, may not
be flexible enough to accurately model a variety of chemical
and physical characteristics of the given system, resulting in a
loss of accuracy and limited transferability.4 However, the
concept of Ultra-Coarse-Graining (UCG) theory19−21 has
been developed to address this issue (and others) by
introducing internal “states” to CG sites to incorporate the
effects of important degrees of freedom that may be missing at
the CG resolution. In the UCG framework, the internal states
interact through an associated CG site-state-dependent
potential that can also be obtained by using the MS-CG
procedure (possibly with other steps or fitting as well). To
efficiently incorporate the internal states into UCG models,
one of the most successful approaches21assumes a separation
of time scales such that the internal state relaxation time is
shorter than the CG site translational relaxation times. In the
rapid local equilibrium (RLE) limit, the internal states can be
regarded as being in quasi-equilibrium, and the UCG site is
expressed as the linear combination of these internal states
with their substate probabilities. Hence, the UCG internal sites
can dynamically switch their internal states and corresponding
force-field parameters on the fly, depending on their
surrounding environment and local structural conditions.
Recent work has shown that UCG theory significantly
improves, e.g., the accuracy of structural properties for
interfacial systems22 and energetics for hydrogen bonding,23

while also enhancing the transferability of bottom-up CG
models.24

Another limiting case for UCG modeling is the case in which
the internal UCG states make rare transitions relative to the
time scale of the CG site motions.20 The resulting UCG
dynamics is somewhat like a trajectory for the CG sites
interacting with a moving Kinetic Monte Carlo algorithm for
the internal UCG state transitions. This approach has
facilitated the simulation of biomolecular active matter, e.g.,
actin filaments that hydrolyze ATP during their motions.25,26

In between the two limiting UCG cases described in the last
two paragraphs, one can develop a more ad hoc equation of
motion for the UCG MD dynamics coupled to internal CG
site state changes. However, while being more ad hoc such an
algorithm has led to some noteworthy successes, e.g., in the
simulation of the assembly of the HIV-1 virus capsid from over
1000 proteins.27,28

Another systematic “bottom-up” CG’ing approach is relative
entropy minimization (REM), which quantitatively minimizes
the log difference between the configurational phase-space
probability distributions of the CG and reference FG model
(e.g., all-atom), which is referred to as the relative entropy. On
the basis of the mathematical relationship between the relative
entropy and linear model parameters, an iterative approach has
been developed to variationally minimize the relative entropies
by refining the CG potentials stepwise.29−32

In this paper and in the OpenMSCG software, the term
“MS-CG” is taken to refer to not only the conventional “FM”
approach as described earlier but also the general set of
“bottom-up” CG’ing ideas in multiscale theory. These include

the three major approaches described above as well as other
methods such as Boltzmann inversion (BI)33 and heteroge-
neous elastic network modeling (HENM).34

It is important to note that “bottom-up” CG models are
derived from FG interaction data at a given thermodynamic
state point and are therefore not rigorously transferable from
one system to another or one state point to another.2,4,24,35−38

(Indeed, there is no sound theoretical basis from statistical
mechanics in which any top-down CG model can claim
transferability between systems either.) Instead, the vision of
our multiscale coarse-graining methodology is to provide a
systematic modeling workflow that can be easily and effectively
applied to a variety of studied systems, each individually.
Moreover, a successful MS-CG model usually needs a
combination of multiple methods and requires adequate
knowledge, experience, and domain insight from the
researcher. Therefore, a sustainable and sharable development
environment is of great interest and value for the CG’ing
community.

To address these goals, we report here the development and
release of an open-source software package, OpenMSCG, for
the purpose of high-performance, sharable, and reproducible
MS-CG modeling. The release of OpenMSCG includes
modeling tools for the BI, FM, UCG, and REM methods,
and it supports a variety of data formats used as input/output
for MD software packages such as Gromacs,39 NAMD,40 and
LAMMPS.41 OpenMSCG is wrapped as a Python3 package
and can be used as a software development kit (SDK) for
researchers to customize their workflows by importing these
modules into their own scripts as building blocks. Therefore,
researchers can apply OpenMSCG as standardized templates
to create and publish their “recipes,” detailing all steps from the
beginning to the end, of any modeling work, which can enable
reliable and collaborative sharing throughout the CG’ing
community.

The remaining body of this article is organized as follows:
Section 2 briefly describes the architecture, workflow, and
features of OpenMSCG, as well as the implemented MS-CG
methods. Several benchmark studies, including a liquid−vapor
interface, heterogeneous fluid mixtures, and HIV-1 CA/SP1
protein−protein interactions, are reported and discussed using
different CG modeling approaches in Section 3, as well as a
comparison of OpenMSCG with related software packages.
Finally, Section 4 provides conclusions and perspectives for
future development.

2. METHODS
2.1. Overview. In general, a bottom-up CG model is

derived to generate the configurational equilibrium probability
distribution of the all-atom model when mapped to the CG
particle phase space

= [ ] [ ]R P r p M r R M p P r pP P( , ) ( , ) ( ) ( ) d dCG AA

(1)

where M is the mapping function, by which the CG phase
space configurations (R, P) are constructed from the atomistic
configurations (r, p). A common mapping function is the
center of mass of atoms that are grouped by certain strategies,
such as geometry-based or sequence-based approaches. In this
case, the mapping function can be considered as an n × N
matrix, M̂, for the linear transformation of 3n atomistic
coordinates into 3N CG coordinates.
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In the canonical ensemble, eq 1 can be rewritten as
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are the partition functions of the CG model and the all-atom
model, respectively. Once the mapping function is decided, the
right side of eq 2 can be obtained from all-atom MD
simulations. Then, the MS-CG method seeks to obtain the CG
particle effective potential, UCG(R), which reproduces the
configurational probability distributions of the mapped all-
atom reference data. This “potential” is actually a potential of
mean force, i.e., a free energy surface for the CG particles (aka
the CG “sites” or “beads”).

Previous studies have focused on constructing UCG(R) using
multibody interactions. The most common design of UCG(R),
which is implemented in OpenMSCG, holds a form similar to
that of all-atom molecular mechanics42,43

= +

+ +

R r bU U U

U U

( ) ( ) ( )

( ) ( )

b

b b

CG pair 2

3 4 (5)

where r, b, θ, and φ are geometric terms for nonbonded
pairwise distances, 2-body bond lengths, 3-body bending
angles, and 4-body torsional dihedral angles, respectively. In
some cases, pairwise interactions only for nonbonded CG sites
fail to capture certain structural properties, such as the
tetrahedral structure of liquid water due to hydrogen bonding.
Therefore, we also introduced an optional Stillinger−Weber
(SW) style three-body nonbonded term,14,44 which can be
used to improve such structural correlations in CG systems, for
example, the recently reported BUMPer water model.45,46

Depending upon the particular functional form for UCG (R)
that is chosen, a set of parameters, {λ}, must be fitted or
optimized to satisfy eq 2. In MS-CG methodology, a practical
functional form for these parameters is the k-order B-
spline,47,48 given by

=
=

S Bx c x( ) ( )k
i

n

i i k
1

,
(6)

Figure 1. Overview of the OpenMSCG software illustrated as a four-layer framework: (1) input, (2) featurization, (3) parameterization, and (4)
output layers (from bottom to top).
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where Bi,k(x) is a B-spline basis function with coefficient ci,
which defines the controlling knots of the spline, are to be
fitted or optimized during the parametrization.

The framework for MS-CG modeling described above has
been implemented in the OpenMSCG software framework
following the hierarchy that is illustrated in Figure 1 and
summarized below.

2.1.1. Input Layer. Modules in the input layer are used to
read topology definitions and trajectories as well as other input
files. The topology reader module supports multiple file
formats that include topology information such as particle
types and bonds. The trajectory reader module reads and
processes simulation trajectories in file formats that are
generated by common MD simulation packages, including
GROMACS,39 NAMD,40 and LAMMPS.41 These modules
provide the data fed into the featurization layer, which is
described next. These modules can also be used to convert all-
atom MD simulation trajectories into CG trajectories
according to user-defined mapping rules; for this purpose, we
developed the CGMAP tool. Additionally, the resulting CG
trajectories can be used for training of machine-learned CG
force fields (e.g., based on deep neural networks) with minimal
user involvement.49−51 While CGMAP defines mappings for
both atomistic configurational and force data, it is worth noting
that the force mapping operator is not uniquely determined by
the coordinate mapping operator.10

The aggforce software feature furthermore enables opti-
mization of the force mapping operator to reduce the noise
present in the atomistic forces, with a particular emphasis
toward machine-learned CG force fields.52 We developed the
CGFMP tool to enable optimization of the force mapping,
given a coordinate map, through interfacing with the aggforce
software package.

2.1.2. Featurization Layer. The CG configurations, R, from
the mapped CG trajectories are read and fed into this layer to
calculate the geometrical terms, defined by the topology of the
CG system. The generated geometric terms are fed into the
parametrization layer described below. These modules apply
standard MD algorithms for computational efficiency, such as
the Verlet-List algorithm53 for the construction of the pairwise
neighbor lists. Forces are evaluated from defined potential
energy functions by the chain rule

= =R
f

U
R

U

R
( ) ( )

I
I i

i i

i

i

I

CG

(7)

where α is the x, y, or z component, and χi and Ui(χi) are the
geometric variable and decomposed potential function for the
CG site I, respectively. The partial derivatives, ∂χi/∂RI

α, are
calculated and stored by the modules in this layer.

2.1.3. Parameterization Layer. The parametrization layer
provides several modeling modules, each of which can be
declared to parametrize a given interaction type using a
particular functional form, such as B-splines for nonbonded
pair or Harmonic for bonded interactions. These modules are
designed to be uniform with an Application Programming
Interface (API) that facilitates their use across parametrization
tools. These APIs export three groups of quantities relevant to
parameter optimization or fitting:

a. U(λi) and F(λi)�values of potential energies and forces,
respectively, on CG sites, which can be used for Monte
Carlo (MC)/MD codes or energy/force analysis.

b.
Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑ

F

i j,

i

j

, �matrix of partial derivatives of forces on the ith

CG site with respect to the jth parameter in the model,
which is used in the FM method.

c. { }U

j
�vector of partial derivatives of potential energies

for each parameter in this model, which is used in the
REM method.

2.1.4. Output Layer. Tabulated numerical potentials are
widely used in bottom-up CG simulations due to their
flexibility and low computational cost. OpenMSCG applies this
idea and can output CG potentials in tabulated file formats
that are used in common MD simulators. This does not mean
that the models provided by OpenMSCG support only
tabulated functional forms, as conventional analytical functions
can be converted into tabulated forms. Similarly, tabulated
potentials can be fitted to an empirical functional form using
regression software tools, e.g., SciPy.54

2.2. Parameterization Tools. There are currently three
MS-CG parametrization methods deployed in OpenMSCG,
each of which has been applied successfully in prior MS-CG
studies. The detailed theories and applications can be found in
related literature, so in this section, only a brief overview and
implementations of them in OpenMSCG are summarized
below:

2.2.1. Direct Boltzmann Inversion. The simplest and most
straightforward approach for CG modeling is to use the
projected free energy surfaces (FES) as effective CG potentials.
The FES can be derived from inverting the probability
distribution functions of targeted feature variables, which are
sampled from the AA trajectories,

= · +U k T P C( ) ln ( )CG B (8)

where P′(χ) is the conditional probability with degeneracy
corrections. For example, the CG potential for a pairwise
interaction is usually derived from its radial distribution
function, g(r), known as the Boltzmann Inversion (BI)
method. The approach is implemented as the CGIB tool in
OpenMSCG. Because the direct BI approach ignores the
correlations between different types of interactions, its CG
potentials may often be unsatisfactory.55 However, these
potentials are still useful as initial trial CG potentials for the
Iterative Boltzmann Inversion (IBI) method55 or other
iterative methods, such as REM.

2.2.2. Force-Matching and Ultra-Coarse-Graining Meth-
ods. Instead of directly matching the structural correlations, as
done in BI and IBI, the FM approach minimizes the differences
between forces from the CG models and reference forces from
all-atom trajectories. In practice, tabulated effective forces are
derived by the variational principle by minimizing force
residuals

[ ] = | [ ] |
=

F F M r F r
N
1

3
( ) ( )R

I

N

I
N n

I
n2

1
CG, AA,

2

(9)

where N and n are the number of CG sites and all-atom sites
(atoms), respectively. Because the CG forces are calculated
from a group of linear functions of the model parameters,
minimization of χ2 is equivalent to obtaining the solution ϕ for
the least-squares regression problem48

=F f (10)
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where F is the coefficient matrix of force derivatives

×
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,

A

, nA is the number of atoms, nt is the number of

trajectory frames, and nλ is the total number of parameters in
the model. The coefficient matrix is highly sparse, and the
computer memory requirement is linear to the size of the
trajectory, which is not practical.48 Therefore, many improved
algorithms have been developed to resolve this issue, such as
the block average (BA) and normal equation (NE)48 methods.
The NE algorithm, which is the most commonly used, is
implemented in OpenMSCG. The solution ϕ is obtained by
solving an equivalent singular value decomposition problem as

=F F F fT T (11)

in which a square matrix FTF with only nλ × nλ dimensions
needs to be stored and accumulated over trajectory frames. To
address potential overfitting, ridge regression56 and Bayesian57

regularization approaches are also applied within this frame-
work.

The UCG methodology, which has been extensively
developed in recent years,19−24 can be implemented by
extending the conventional FM framework.15 After reading a
trajectory frame and constructing the features, a weighting
function determines the probabilities of the internal states for
every CG particle on the fly. To efficiently introduce the
internal state probabilities into the FM framework, we use an
indirect sampling approach that does not explicitly involve the
probability information during FM. In detail, a number of
independent frames of the CG system are spawned, which all
have the same coordinates but different CG types that
represent different internal states and are assigned randomly
in agreement with the determined weights, known as the
dynamic type. If one chooses a sufficiently large number for
sampling, the dynamic type FM force residual becomes the
ideal UCG force residual. The construction of the coefficient
matrix for spawned frames and other modeling steps are
performed in the same manner as conventional FM.

Both the conventional FM and the newly developed UCG
methodologies are implemented in the CGFM tool, and their
detailed workflow is illustrated in Figure 2a.

2.2.3. Iterative Relative Entropy Minimization. The REM
method29−31 aims to minimize the relative entropy objective
function

=
[ ]
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where pAA(r) and pCG(M[r]) are the probabilities of the all-
atom and CG configurations, respectively, e.g., as sampled
from MD simulations, and Smap describes the degeneracy due
to mapping. In the canonical ensemble, eq 12 can be rewritten
as

= +S U U A A S( )rel CG AA AA CG AA map (13)

where A = −kBT ln Z is the Helmholtz free energy. This
method optimizes the model parameters {λi} by minimizing
the relative entropy, Srel. In practice, an iterative approach can
be used to tune the parameters with a certain step length χ,
described as
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where the derivatives can be written as

=
i
k
jjjjj

y
{
zzzzz

S U U

i i i

rel
AA CG

(15)
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Figure 2. Illustrations of workflows for the CGFM and CGREM tools: (A) The CGFM tool is used for FM and UCG methods, in which the force-
field coefficients are solved from linear regression. (B) The CGREM tool was used for the REM method, in which the force-field coefficients are
obtained by iteratively minimizing the relative entropy between all-atom and CG trajectories calculated by the CGDERIV tool.
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If the parameters are linear coefficients in the potential, the
second-order derivatives will be zero and stepwise tuning from
step k to step k + 1 can be written as
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In eq 17, the potential energy derivatives are evaluated over
two CG trajectories. The term ⟨···⟩AA denotes the ensemble
average from the CG trajectory mapped from the all-atom
reference simulations, while the term ⟨···⟩CG denotes the
average from the trajectory from a CG simulation using a trial
set of parameters. The initial parameters can be obtained from
BI or FM. In OpenMSCG, this method is implemented in two
tools, CGDERIV and CGREM, as illustrated in Figure 2b. The
tool CGDERIV calculates the ensemble averages of the energy
derivatives from any given trajectories, which serves as the
kernel work for CGREM. CGREM carries out the iterative
workflow described as below:

a. Read in the U
AA

i
calculated by CGDERIV on the

reference trajectory mapped from the all-atom MD
simulation.

b. Read in the initial trial parameters λi
(0)

c. Launch external MD software to conduct a CG
simulation with the trial parameters λi

(k) and generate a
new CG trajectory.

d. Call CGDERIV to calculate U
CG

i
and ( )U

2

CG
i

from

the new CG trajectory.
e. Calculate the step length and adjust the trial parameters

to λi
(k+1)

f. Repeat steps (c)−(e) until the parameters converge.
Beyond the standard stepwise scheme, CGREM is flexible

enough to adopt any customized optimize schemes for λi
(k) →

λi
(k+1), which use the terms U

i
, ( )U

2

i
, and U

i

2

2 calculated

by the CGDERIV tool.
2.3. Tools for Modeling of Complex Biomolecules.

One of the most important applications of CG modeling and
simulations is for studies on biological macromolecules, such as
proteins and nucleic acids.58 In most CG models, such as
MARTINI,3,59 one or more CG sites are used to represent
each functional group (e.g., an amino acid residue). To further
increase the spatiotemporal scales, models with less granularity
(lower CG resolution) in which a single CG site represents
multiple functional groups are needed. We note that several
methods have been proposed toward optimal spatial mappings,
and this remains an active area of research.60−64 To this end,
two systematic and quantitative approaches, the Essential
Dynamics Coarse-Graining (EDCG)65 and HeteroENM34

methods, have been successfully applied in various CG studies
of complex biomolecular systems. Both methods aim to retain
and reproduce the most significant atomistic fluctuations (also
known as essential dynamics) from the CG models based on
analysis from all-atom simulation trajectories. These two
methods are implemented in OpenMSCG and are briefly
introduced below.

2.3.1. Essential Dynamics Coarse-Graining. When group-
ing atoms into a specified number of domains, each of which is
represented by a single CG site, the covariance of atomistic
fluctuations between the atoms in the same domain will be
lost. The target of EDCG is to optimally solve the grouping
rules that can yield the least loss (residual) of covariance,
which is defined as
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where N is the number of CG sites (or domains) and nt is the
number of trajectory frames. The covariance matrix can usually
be calculated from a principal component analysis of the all-
atom trajectories. The minimization of the residual is
equivalent to retaining the most significant low-frequency
motions in the CG models. A practical approach for EDCG
protein models is to define CG sites from the center of mass of
a group of Cα atoms, which are assumed to be contiguous in
the amino acid sequence of the protein (i.e., a sequential
model). Therefore, once N is decided, the minimization can be
done by variationally adjusting the boundaries between the N
domains in the protein primary sequence. Previous approaches
combined simulated annealing with the steepest descent search
for optimization, which is not guaranteed to find the global
minimum. In OpenMSCG, EDCG is implemented in the tool
CGED, in which a new algorithm, dynamic programming, is
applied to ensure global optimization. The details of the
implementation are described in the Supporting Information.

2.3.2. Heterogeneous Elastic Network Models. After the
CG sites are defined by the EDCG approach, the structure of
the biomolecules can be maintained by an elastic network
model (ENM),66,67 in which every pair of CG sites with an
average separation distance within a certain cutoff are
connected by an effective harmonic spring. Additionally, the
HeteroENM approach optimizes the force constants of every
pairwise spring in order to reproduce its mean-squared
distance fluctuations. In practice, a uniform set of force
constants are assigned to the model initially and then followed
by iterative updates via

=+k k
x x
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where kij
n is the force constant for the spring between the CG

sites i and j in the iteration n, and Δxij,NMA
2 is the fluctuation of

the pairwise distance calculated by normal-mode analysis on
the minimized structure from the trial set of force constants
{kij

n}.
2.4. Features and Implementations. OpenMSCG is an

open-source package developed mainly using Python3, with
computationally intensive tasks, i.e., the Verlet-List algorithm,
developed and optimized in C++ and wrapped as extensions to
the Python framework. It is a high-performance computing
software that can handle the modeling of large-scale systems
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and is also capable of using multithreading and parallel
computing techniques on supercomputers.

The OpenMSCG software package can be used in two ways.
First, the essential tools, such as CGMAP, CGFM, and
CGREM, are provided as command-line-interface scripts,
which can be directly launched with specified input files and
runtime options. Second, all components, including the
modules and tools described above, are wrapped as Python
packages with an API, which can be called upon by users to
develop their own custom modeling workflows. This feature
will allow users to script their full modeling workflow and
publish the scripts (or Jupyter-Notebooks) to demonstrate the
details of the work. Therefore, OpenMSCG will greatly
improve the reliability, reproducibility, and sharing of
bottom-up CG models and applications.

The software package is prepared and released in Anaconda
Cloud, providing an easy and user-friendly way for installation
and upgrades. The source code is under version control on
GitLab, from which users can download the package for

customized installation and development (https://software.rcc.
uchicago.edu/git/MSCG/openmscg). Documentation of the
OpenMSCG software (https://software.rcc.uchicago.edu/
mscg/docs/) as well as tutorials (https://software.rcc.
uchicago.edu/mscg/tutorials/) are available for ease of
usability. Tutorials demonstrating examples in the manuscript
including the workflow from mapping to parametrization can
be found at https://software.rcc.uchicago.edu/git/MSCG/
openmscg/-/tree/master/examples/Manuscript/.

3. RESULTS AND DISCUSSION
3.1. Liquid−Vapor Interface of a Methanol Droplet.

To demonstrate the capabilities of the OpenMSCG package,
MS-CG and UCG (RLE) models for a methanol−vapor
interface were constructed. In this work, we focus on the
formation of a droplet-like methanol cluster, which can be
thought of as an extension of the liquid−vapor slab structure
that was reported in the previous UCG study.22

Figure 3. Example of UCG modeling for the liquid−vapor interface of a methanol droplet. (A) A snapshot from the all-atom MD simulation. (B) A
snapshot from the UCG simulation that demonstrates similar liquid−vapor structures. (C) The pair potentials from MS-CG (dashed line) and
UCG (solid lines) methods. (D) Radial density profiles originated from the center of the droplet in simulations with all-atom, MS-CG, and UCG
models.
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3.1.1. Atomistic Simulations. The all-atom system was built
by placing 1728 methanol molecules into a 49.25 Å × 49.25 Å
× 49.25 Å cubic box. The simulation was performed in
GROMACS39 using OPLS/AA force-field parameters68 in the
constant NVT ensemble with a Nose−́Hoover thermostat69,70

at 298.15 K. The Particle-Mesh-Ewald technique71 was used
for the long-range electrostatic interactions, and all covalent
bonds with hydrogen atoms were treated by the LINear
Constraint Solver (LINCS) algorithm.72 The system was
simulated for 10 ns until a droplet structure in the vacuum was
formed and maintained (Figure 3A). Finally, in order to obtain
the trajectory for CG parametrization, the constant NVT
simulation was performed for an additional 5 ns.

3.1.2. CG Mapping and Modeling. From the generated all-
atom trajectory, the CG model was parametrized from the
manually mapped CG trajectory using the center of mass of

each methanol molecule, given by the CGMAP tool in
OpenMSCG. Then, using the pairwise approximation, the
effective pairwise potentials between the methanol CG sites
were determined. The tabulated MS-CG and UCG potentials
were built using third-order B-splines covering the pair
distance from 2.8 to 10.0 Å with a knot spacing of 0.1 Å.
For UCG modeling, we adopt the RLE limit.22 Based on the
nonuniform nature exhibited by a droplet structure, the
internal sites for methanol are distinguished via the local
density. Following the earlier work on the local density-based
UCG models,21 the internal states are further defined as
“denser (α)” or “less dense (β)” states with the substate
probabilities assigned by

Figure 4. Example use of OpenMSCG for methanol−hexane interface. (A) A snapshot of the methanol (green) and hexane (red) interfaces at the
CG level. (B) Local density distributions of methanol−methanol (left) and hexane−hexane (right) in the high-density (red circles) and low-density
(blue squares) regions. (C) Comparison of density profiles of methanol (left) and hexane (right) from the MS-CG (blue diamonds) and UCG
(green plus) models with the reference all-atom structures (red circles).
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in which ρI is the number density for the CG site I and can be
obtained by a local proximity function from all neighboring
methanol sites
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By design, methanol with a higher local density corresponds to
a denser state, which should resemble bulk methanol, whereas
a less dense state can describe the interface of the droplet.
Following a prior study on density-based methanol UCG
models, we employed the same UCG state parameters22 for
eqs 21−23: rth = 4.5 Å and ρth = 3.5. After the UCG states
were defined, the state-wise interaction parameters were
determined from the CGFM tool, which was also used for
the (conventional) MS-CG model. Finally, the MS-CG and
UCG simulations were performed using the LAMMPS MD
package.41

3.1.3. CG Model Validation. From the MS-CG and UCG
simulations, we can assess the performance of CG models by
calculating the normalized radial density profiles
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where ρ0 is the standard number density of methanol
molecules in the bulk phase and rCOM is the center of mass
of the liquid droplet. The results for the MS-CG and UCG
models are shown in Figure 3D in comparison with the all-
atom reference. Consistent with a finely detailed description of
the slab structure in the liquid−vapor interface for methanol,22

the UCG model can produce an almost identical interfacial
structure as the all-atom model for the droplet morphology as
well. In contrast, as expected, the conventional MS-CG model
yields an inaccurate density profile with a broad transition
region where molecules near the center of the droplet are
overly attracted. This discrepancy is attributed to the effective
CG potentials shown in Figure 3C. In the UCG model,
methanol near the interface region or gas phase is likely to be
in the less dense state for which the associated pairwise CG
potentials have more attractive interactions to maintain the
interface structure. On the other hand, molecules in the liquid
phase are more likely to be in the denser state that is
dominated by a pairwise potential similar to the bulk
interaction. Therefore, by introducing an order parameter to
the FM procedure, the molecular nature underlying the
interface system can be readily captured by different state-
wise interactions. During the UCG simulation, the UCG site
can reflect the local chemical environment and adjust its
corresponding interaction, whereas the conventional MS-CG
method is limited to a single potential to describe CG sites in
different chemical environments, resulting in an averaged
interaction of the UCG substate interactions.

3.2. Methanol−Hexane Interface. In addition to the
methanol vapor−liquid droplet system, we illustrate the
applicability of the MS-CG and UCG modules in OpenMSCG
for a more complicated liquid−liquid two-component system.
We note that the original UCG work studied the liquid−liquid

interface consisting of methanol and carbon tetrachloride,22

and we now validate the performance of OpenMSCG modules
for a similar system: the liquid−liquid interface of methanol−
hexane. Particularly, we investigate a methanol and hexane
mixture with a 0.65−0.35 mole fraction, which has been
experimentally observed to undergo phase separation and
exhibit an upper critical solution temperature of 313 K.73

3.2.1. Atomistic Simulations. The all-atom slab system
consists of 1000 molecules of methanol and 550 molecules of
hexane arranged in a slab-like geometry in the z-direction
(Figure 4A) under the periodic boundary condition (PBC).
The slab model was constructed from equilibrated and relaxed
bulk systems of methanol (containing 1000 molecules) and
hexane (containing 550 molecules) separately. Specifically,
these bulk systems were equilibrated in the constant NPT
ensemble for a period of 4 ns, with subsequent constant NVT
relaxation for a period of 5 ns. Following the relaxations, the x-
and y-dimensions of the bulk methanol and hexane were
adjusted to have the same values, and the z-dimension was
simultaneously adjusted to maintain their respective densities.
Then, the bulk liquids were combined along the z-direction to
form the layered slab (Figure 4A). The layered model was then
relaxed for 6 ns in the constant NPT ensemble, followed by
production runs for 5 ns in the constant NVT ensemble.
Intermediate snapshots during the constant NVT simulation
were collected every 1 ps during the production runs, which
were subsequently used to construct the CG models for
parametrization.

All of the atomistic simulations described above were
performed at 295 K and 1 atm using the LAMMPS41 MD
package with a time step of 1 fs. The General AMBER Force
Field (GAFF)74 was used as an atomistic force field, where the
partial atomic charges for calculating Coulombic forces were
determined using the AM1-BCC method.75,76 A force cutoff
distance of 10 Å was used for both the pairwise Lennard-Jones
(LJ) and the Coulombic interactions. The LJ interactions were
shifted such that they smoothly decay to zero beyond the
cutoff distance. For Coulombic interactions, particle−particle
particle-mesh (PPPM)77,78 solvers were employed to account
for their contributions beyond the cutoff distance. A Nose−́
Hoover thermostat with a damping constant of 0.1 ps and a
Nose−́Hoover barostat with a damping constant of 1 ps were
used to maintain the reference temperature and pressure of the
systems, respectively.

3.2.2. CG Mapping. From the all-atom trajectory, the CG
trajectory for parametrization was constructed using the
CGMAP command of the OpenMSCG package. Both
methanol and hexane molecules were mapped onto their
centers of mass at a resolution of one site per molecule. From
the mapped CG trajectory, the MS-CG and UCG potentials
were determined via FM, supported by the CGFM command
of the OpenMSCG package.

3.2.3. MS-CG and UCG Potentials for the Liquid−Liquid
Interface. For the MS-CG potentials, a linear combination of
B-splines with a resolution of 0.2 Å was used to represent all
pairwise interactions (methanol−methanol, hexane−hexane,
and methanol−hexane) with inner and outer cutoffs of 4 and
12 Å, respectively.

Analogous to the MS-CG models, the UCG interactions
were expressed using the same linear combination of B-splines
for the substate interactions. The inner and outer cutoffs of 3
and 8 Å were used for methanol−methanol, 4 and 8 Å for
hexane−hexane, and 3.5 and 8 Å for methanol−hexane
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interactions. As described earlier, the main purpose of the
UCG methodology is to enhance the expressivity of CG
models by coupling the CG interactions with relevant order
parameters. Like the methanol droplet, the local self-density,
which is the number of the same molecular entities within a
given radius, can serve as an order parameter to distinguish the
phase-separated nature in the interface. To note, the cross-
density was employed for the UCG models of methanol-
carbon tetrachloride,22 and a general discussion on the
definition of local density is given by Vanya et al.79 Since the
methanol−hexane interface exhibits locally high- and low-
density regions of each molecule, as seen from the density
profile (Figure 4C, red curve), the use of self-density, given by
eq 23, as an order parameter is expected to modulate the
interactions of methanol or hexane based on their local
neighbors. The calculated local self-density was subsequently
used to estimate the probabilities of the UCG substates
(denser and less dense states) using eqs 21 and 22. To
properly distinguish the denser and less dense states, the
variables required for defining the UCG states (Rth and ρth)
were determined based on the order parameter histogram
constructed from the all-atom simulations. To minimize the
overlap between substates, the density cutoff parameter was
chosen as the density value where two substate histograms
intersect (Figure 4B). Table 1 lists the final state parameters
for the UCG model of the methanol−hexane liquid−liquid
interface.

Having determined the UCG internal states, the effective
UCG state-wise potentials were obtained via the dynamic type
method described in Section 2. To accurately embed the
substate probability information into the FM framework, the
mapped CG trajectory was replicated 50 times, and the CGFM
command was employed to infer the UCG state-wise
potentials.

3.2.4. CG Model Validation. We then calculated the
structural characteristics of MS-CG and UCG models for the
methanol−hexane interface. As seen from the density profiles
in Figure 4C, the MS-CG model fails to distinguish the
different phases of each molecule and instead produces a
single-phase system. This discrepancy is likely due to the
inability of the MS-CG model to capture the heterogeneous
nature of the system in different phases. Nevertheless, the
UCG model overcomes this limitation by readily distinguishing
the different phases using the self-density order parameter,
resulting in an enhanced density profile compared with that
from the MS-CG simulations (Figure 4C). Notably, the UCG
model shows the phase-separated behavior and maintains the
slab-like geometry of the system, with slight deviations from
the all-atom reference at the edge of interface, as seen in Figure
4C. This is consistent with other CG models for interfaces, for
which a limited number of internal states are used to describe
the phase boundary.24 As expected from the previous success
with local density-based UCG models, we demonstrated that
the UCG models can greatly enhance the structural
correlations by distinguishing the local molecular environment
described by the order parameter, whereas conventional MS-
CG models fail to do so. These results demonstrate the
capabilities of the OpenMSCG package for building highly
robust and predictive CG and UCG models of complex
systems with a choice of appropriate order parameters.

3.3. HIV CA/SP1 Interactions with REM. To demon-
strate the REM capabilities of the OpenMSCG package, a CG
model of the HIV-1 capsid (CA) and spacer peptide 1 (SP1)

Table 1. Distance and Local Self-Density Cutoff (UCG State
Parameters) for the Methanol−Hexane Interface

molecules Rth (Å) ρth ρ type

methanol 9.00 24.56 self-density
hexane 8.85

Figure 5. Example of use of OpenMSCG to optimize HIV-1 CA/SP1 interactions using REM. (A) Schematic of the all-atom HIV-1 CA/SP1
oligomer that is used as a reference to generate the CG model. (B) Profiles depicting parameter changes across iterations during REM. Each color
depicts a distinct Gaussian prefactor. (C) Comparison of RDFs for select CG pairs computed from the all-atom reference (blue) and CG model
(red).
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polyprotein, which assembles into the protein shell of the
immature virus,80 was built and validated by comparison
between reference and model RDFs. The CG model was
systematically derived from all-atom MD simulations, as
described further below.

3.3.1. Atomistic Simulations. The atomistic simulation was
prepared using the atomic model from PDB 5L93,81 an 18-mer
CA/SP1 system (see Figure 5A) and described using the
CHARMM36m force field.82 The system was solvated using
TIP3P water83 and 150 mM NaCl that extended beyond the
surface of the protein by 2 nm. The simulation was integrated
using GROMACS39 with a time step of 2 fs and PBC in all
directions. The system was equilibrated for 50 ns in the
constant NPT ensemble using a Nose−́Hoover thermostat69,70

at 300 K with a 1 ps damping constant and a Parrinello−
Rahman barostat84 at 1 atm with a 5 ps damping constant. The
simulation continued for 1200 ns in the constant NVT
ensemble at 300 K with a 2 ps damping constant. The final
1000 ns was used as reference statistics, with configurations
saved every 40 ps.

3.3.2. CG Model Generation. The all-atom trajectory was
mapped to CG space using linear EDCG where N = 35, i.e.,
each CA/SP1 monomer was mapped to a 35-site CG model.
Intraprotein interactions were described by HeteroENM using
a radial cutoff of 2 nm. Interprotein interactions were described
by a combination of an excluded volume potential (Eexcl),
screened Coulombic potential (Ecoul), and a Gaussian potential
(Egauss) for close contacts. For Eexcl, a soft cosine potential,
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where H, σ, and r0 are the Gaussian prefactor, standard
deviation, and minimum energy distance, respectively. All CG
pairwise contacts with a pair distance probability distribution
described by r0 < 1.75 nm and σ < 0.1 nm were considered
close contacts. For each pairwise interaction, σ and r0 were
computed using peak fitting functions from the Scipy software
package.54 While these parameters were fixed, each H was
optimized using REM; the initial H was uniformly initialized to
−5 kcal/mol. The CG statistics for each iteration were
generated using LAMMPS and the current CG force field,
which was run for 3.5 × 106 steps using a 50 fs time step and a
Langevin thermostat (50 ps damping time) at 300 K. Statistics
were gathered every 50 steps over the final 1 × 106 steps. We
used the iterative Newton−Raphson method to update each H
value shown in eq 14. To aid convergence during training, a
learning rate schedule for χ was implemented:

1. χ = 0.5 during the first 10 iterations
2. χ = 0.1 during the next 40 iterations
3. χ = 0.025 during the next 50 iterations
4. χ = 0.01 during the next 100 iterations
5. χ = 0.001 during the next 100 iterations

A total of 300 iterations were used to generate the CG
model. As seen in Figure 5b, the iterative procedure was
stopped as the change to each parameter was effectively zero.

3.3.3. CG Model Validation. After CG parameter
optimization, we tested the fidelity of the generated model
by comparing pair correlation statistics to the all-atom
reference. In Figure 5C, we show a selection of RDFs between
pairs that are both close contacts and nonclose (e.g., pairs 1−8,
6−21, and 29−32) contacts to demonstrate that pair
correlations beyond those imposed by the attractive Gaussian
interaction are qualitatively preserved. It is evident from Figure
5C that the CG model recapitulates the peak positions and the
variance of the reference pair correlations. Due to the
simplicity of the Gaussian functional form, which was chosen
to simplify model parametrization, some secondary peak
features of the reference RDFs, as seen in the 6−6 and 34−
34 pair correlations, were not captured by the CG model. A
user may choose to increase the complexity of the functional
form, which may be accomplished by using multiple Gaussians
or B-splines, in order to increase fidelity to the reference RDFs.
Both functional forms have been implemented in OpenMSCG,
with additional functional forms to be implemented in the
future.

3.4. Comparison with Other Software Packages.
Other available CG model software packages that have similar
functionalities to OpenMSCG include MagiC,87,88

VOTCA,89,90 and BOCS.91 MagiC was developed by the
Lyubartsev group in 2013,87 with a newer 3.0 version released
in 2018.88 MagiC provides a set of Fortran-based tools for CG
mapping and effective potential calculations with Inverse
Monte Carlo (IMC) and IBI methods, as well as several
Python scripts for data postprocessing. VOTCA was developed
by Rühle et al. in 2009,90 and contains the functionalities of
IMC, IBI, as well as FM using cubic splines. In 2016, the REM
method was also added to this software by de Oliveira et al.89

Beyond the conventional MS-CG method, the BOCS software,
which was released in 2017 by the Noid group,91 also provides
another tool for potential parametrization called the general-
ized Yvon-Born−Green method92,93 and pressure-matching
method based on the Das-Andersen Hamiltonian.14 All of
these software packages are focused on providing full
workflows using a bottom-up multiscale strategy to construct
CG effective potentials from all-atom simulation data.

OpenMSCG has been developed to support a large group of
multiscale modeling methodologies, including popular poten-
tial parametrization methods such as BI, FM, and REM, as well
as the recently introduced UCG method. These parametriza-
tion tools utilize, but are not limited to, B-splines as a
functional form for the CG effective potentials. As
OpenMSCG was developed as an open framework, it is
possible for users to create a new functional form in Python
that can be imported in either FM or REM workflows. Since
OpenMSCG is highly modularized, users can invoke and
customize any existing modules within it to develop new
approaches for MS-CG-based modeling. For example, in the
FM module, users can develop a customized Python module
for the regularization procedure that is imported by the
software. Another example is that the REM module also allows
a plug-in module customized by users for updating and tuning
the CG potential parameters in the iterative procedure.
Combining both modules in a hybrid manner, one can also
possibly utilize the advantages of FM and REM methodologies
to construct new forms of high-fidelity CG models.94
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4. CONCLUSIONS
In bottom-up multiscale coarse-grained modeling, there is no
single unified approach that can encompass different
conditions and resolutions of complex systems due to its
data-driven nature. Even within the same molecular systems,
CG models are generally not transferable between different
thermodynamic conditions, e.g., temperature or density,
known as the transferability problem.2,4,24,35−38 However, the
workflows and protocols of MS-CG modeling are transferable
and sharable. In this work, we developed the software package
OpenMSCG, for the purpose of enabling highly systematic and
reproducible work from MS-CG modeling workflows.
OpenMSCG integrates a comprehensive toolset to build up
CG models and parametrize CG effective potentials from all-
atom MD simulations. The structure of the software is well
organized and documented and is easy to install (via Anaconda
Cloud) and extend (via Python programming). Additionally,
most of the tools are implemented with multithreading or
distributed parallelization features to handle large MD data for
complex systems. The benchmark systems presented in this
paper demonstrate that OpenMSCG can produce reliable CG
and UCG models that accurately reproduce the structural
properties from all-atom models. In particular, we extended the
conventional FM technique to the UCG theory based on the
original algorithm which can extend the range and physical
accuracy of CG models for more complex heterogeneous
systems.19 The vision of OpenMSCG is to not only enhance
the performance and reproducibility of MS-CG models but
also attract more researchers and contributors to the bottom-
up CG modeling community. We also hope that the
OpenMSCG software will be continuously updated to
implement new advances in bottom-up CG methodologies.
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