40 research outputs found

    A New Species of River Dolphin from Brazil or:How Little Do We Know Our Biodiversity

    Get PDF
    True river dolphins are some of the rarest and most endangered of all vertebrates. They comprise relict evolutionary lineages of high taxonomic distinctness and conservation value, but are afforded little protection. We report the discovery of a new species of a river dolphin from the Araguaia River basin of Brazil, the first such discovery in nearly 100 years. The species is diagnosable by a series of molecular and morphological characters and diverged from its Amazonian sister taxon 2.08 million years ago. The estimated time of divergence corresponds to the separation of the Araguaia-Tocantins basin from the Amazon basin. This discovery highlights the immensity of the deficit in our knowledge of Neotropical biodiversity, as well as vulnerability of biodiversity to anthropogenic actions in an increasingly threatened landscape. We anticipate that this study will provide an impetus for the taxonomic and conservation reanalysis of other taxa shared between the Araguaia and Amazon aquatic ecosystems, as well as stimulate historical biogeographical analyses of the two basins

    In Vivo Fluorescence Lifetime Imaging Monitors Binding of Specific Probes to Cancer Biomarkers

    Get PDF
    One of the most important factors in choosing a treatment strategy for cancer is characterization of biomarkers in cancer cells. Particularly, recent advances in Monoclonal Antibodies (MAB) as primary-specific drugs targeting tumor receptors show that their efficacy depends strongly on characterization of tumor biomarkers. Assessment of their status in individual patients would facilitate selection of an optimal treatment strategy, and the continuous monitoring of those biomarkers and their binding process to the therapy would provide a means for early evaluation of the efficacy of therapeutic intervention. In this study we have demonstrated for the first time in live animals that the fluorescence lifetime can be used to detect the binding of targeted optical probes to the extracellular receptors on tumor cells in vivo. The rationale was that fluorescence lifetime of a specific probe is sensitive to local environment and/or affinity to other molecules. We attached Near-InfraRed (NIR) fluorescent probes to Human Epidermal Growth Factor 2 (HER2/neu)-specific Affibody molecules and used our time-resolved optical system to compare the fluorescence lifetime of the optical probes that were bound and unbound to tumor cells in live mice. Our results show that the fluorescence lifetime changes in our model system delineate HER2 receptor bound from the unbound probe in vivo. Thus, this method is useful as a specific marker of the receptor binding process, which can open a new paradigm in the “image and treat” concept, especially for early evaluation of the efficacy of the therapy

    Current methods in structural proteomics and its applications in biological sciences

    Full text link

    Evaluation of potassium salt of phosphonic acid in Nagpur mandarin with special reference to Phytophthora management

    Get PDF
    Phytophthora parasitica var. nicotianae is a major fungal pathogen that causes foot rot, root rot, crown rot, gummosis, leaf fall, and brown rot diseases in Nagpur mandarin in the entire Vidarbha region of Maharashtra. For the efficient management of root rot and gummosis due to Phytophthora, the potassium salt of phosphonic acid (PSPA) was evaluated under field and laboratory conditions. In field trials, infected plants were treated with different concentrations of PSPA by foliar spray and soil drenching. The results revealed that foliar spray + soil drenching of PSPA at 3 ml/liter water was better with respect to the average reduction in no. of lesion with oozing (28.39%), minimum in feeder root index (2.17), increase in canopy volume (11.15%) and higher fruit yield (65.89 kg/ per tree). The effect of PSPA was assayed at three different concentrations against P. nicotianae under in vitro. PSPA was found most effective in arresting the growth of P. nicotianae as complete (100%) inhibition observed in tested doses

    Acne Treatment Based on Selective Photothermolysis of Sebaceous Follicles with Topically Delivered Light-Absorbing Gold Microparticles

    Get PDF
    The pathophysiology of acne vulgaris depends on active sebaceous glands, implying that selective destruction of sebaceous glands could be an effective treatment. We hypothesized that light-absorbing microparticles could be delivered into sebaceous glands, enabling local injury by optical pulses. A suspension of topically applied gold-coated silica microparticles exhibiting plasmon resonance with strong absorption at 800 nm was delivered into human pre-auricular and swine sebaceous glands in vivo, using mechanical vibration. After exposure to 10–50 J cm−2, 30 milliseconds, 800 nm diode laser pulses, microscopy revealed preferential thermal injury to sebaceous follicles and glands, consistent with predictions from a computational model. Inflammation was mild; gold particles were not retained in swine skin 1 month after treatment, and uptake in other organs was negligible. Two independent prospective randomized controlled clinical trials were performed for treatment of moderate-to-severe facial acne, using unblinded and blinded assessments of disease severity. Each trial showed clinically and statistically significant improvement of inflammatory acne following three treatments given 1–2 weeks apart. In Trial 2, inflammatory lesions were significantly reduced at 12 weeks (P=0.015) and 16 weeks (P=0.04) compared with sham treatments. Optical microparticles enable selective photothermolysis of sebaceous glands. This appears to be a well-tolerated, effective treatment for acne vulgaris
    corecore