197 research outputs found

    The electron transport chain sensitisesStaphylococcus aureus and Enterococcus faecalis to the oxidative burst

    Get PDF
    Small colony variants (SCVs) of Staphylococcus aureus typically lack a functional electron transport chain and cannot produce virulence factors such as leukocidins, hemolysins or the anti-oxidant staphyloxanthin. Despite this, SCVs are associated with persistent infections of the bloodstream, bones and prosthetic devices. The survival of SCVs in the host has been ascribed to intracellular residency, biofilm formation and resistance to antibiotics. However, the ability of SCVs to resist host defences is largely uncharacterised. To address this, we measured survival of wild-type and SCV S. aureus in whole human blood, which contains high numbers of neutrophils, the key defense against staphylococcal infection. Despite the loss of leukcocidin production and staphyloxanthin biosynthesis, SCVs defective for heme or menquinone biosynthesis were significantly more resistant to the oxidative burst than wild-type bacteria in human blood or the presence of purified neutrophils. Supplementation of the culture medium of the heme-auxotrophic SCV with heme, but not iron, restored growth, hemolysin and staphyloxanthin production, and sensitivity to the oxidative burst. Since Enterococcus faecalis is a natural heme auxotroph and cause of bloodstream infection, we explored whether restoration of the electron transport chain in this organism also affected survival in blood. Incubation of E. faecalis with heme increased growth and restored catalase activity, but resulted in decreased survival in human blood via increased sensitivity to the oxidative burst. Therefore, the lack of functional electron transport chains in SCV S. aureus and wild-type E. faecalis results in reduced growth rate but provides resistance to a key immune defence mechanism

    Adaption of the ex vivo mycobacterial growth inhibition assay for use with murine lung cells.

    Get PDF
    In the absence of a correlate(s) of protection against human tuberculosis and a validated animal model of the disease, tools to facilitate vaccine development must be identified. We present an optimised ex vivo mycobacterial growth inhibition assay (MGIA) to assess the ability of host cells within the lung to inhibit mycobacterial growth, including Bacille Calmette-Guérin (BCG) and Mycobacterium tuberculosis (MTB) Erdman. Growth of BCG was reduced by 0.39, 0.96 and 0.73 log10 CFU following subcutaneous (s.c.) BCG, intranasal (i.n.) BCG, or BCG s.c. + mucosal boost, respectively, versus naïve mice. Comparatively, a 0.49 (s.c.), 0.60 (i.n.) and 0.81 (s.c. + mucosal boost) log10 reduction in MTB CFU was found. A BCG growth inhibitor, 2-thiophenecarboxylic acid hydrazide (TCH), was used to prevent quantification of residual BCG from i.n. immunisation and allow accurate MTB quantification. Using TCH, a further 0.58 log10 reduction in MTB CFU was revealed in the i.n. group. In combination with existing methods, the ex vivo lung MGIA may represent an important tool for analysis of vaccine efficacy and the immune mechanisms associated with vaccination in the organ primarily affected by MTB disease

    Actuation of Micro-Optomechanical Systems Via Cavity-Enhanced Optical Dipole Forces

    Get PDF
    We demonstrate a new type of optomechanical system employing a movable, micron-scale waveguide evanescently-coupled to a high-Q optical microresonator. Micron-scale displacements of the waveguide are observed for milliwatt(mW)-level optical input powers. Measurement of the spatial variation of the force on the waveguide indicates that it arises from a cavity-enhanced optical dipole force due to the stored optical field of the resonator. This force is used to realize an all-optical tunable filter operating with sub-mW control power. A theoretical model of the system shows the maximum achievable force to be independent of the intrinsic Q of the optical resonator and to scale inversely with the cavity mode volume, suggesting that such forces may become even more effective as devices approach the nanoscale.Comment: 4 pages, 5 figures. High resolution version available at (http://copilot.caltech.edu/publications/CEODF_hires.pdf). For associated movie, see (http://copilot.caltech.edu/research/optical_forces/index.htm

    Paired modes of heterostructure cavities in photonic crystal waveguides with split band edges

    Get PDF
    We investigate the modes of double heterostructure cavities where the underlying photonic crystal waveguide has been dispersion engineered to have two band-edges inside the Brillouin zone. By deriving and using a perturbative method, we show that these structures possess two modes. For unapodized cavities, the relative detuning of the two modes can be controlled by changing the cavity length, and for particular lengths, a resonant-like effect makes the modes degenerate. For apodized cavities no such resonances exist and the modes are always non-degenerate. © 2010 Optical Society of America

    Spatio-temporal Models of Lymphangiogenesis in Wound Healing

    Full text link
    Several studies suggest that one possible cause of impaired wound healing is failed or insufficient lymphangiogenesis, that is the formation of new lymphatic capillaries. Although many mathematical models have been developed to describe the formation of blood capillaries (angiogenesis), very few have been proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a markedly different process from angiogenesis, occurring at different times and in response to different chemical stimuli. Two main hypotheses have been proposed: 1) lymphatic capillaries sprout from existing interrupted ones at the edge of the wound in analogy to the blood angiogenesis case; 2) lymphatic endothelial cells first pool in the wound region following the lymph flow and then, once sufficiently populated, start to form a network. Here we present two PDE models describing lymphangiogenesis according to these two different hypotheses. Further, we include the effect of advection due to interstitial flow and lymph flow coming from open capillaries. The variables represent different cell densities and growth factor concentrations, and where possible the parameters are estimated from biological data. The models are then solved numerically and the results are compared with the available biological literature.Comment: 29 pages, 9 Figures, 6 Tables (39 figure files in total

    Edging toward ‘reasonably’ good corporate governance

    Get PDF
    Over four decades, research and policy have created layers of understandings in the quest for “good” corporate governance. The corporate excesses of the 1970s sparked a search for market mechanisms and disclosure to empower shareholders. The UK-focused problems of the 1990s prompted board-centric, structural approaches, while the fall of Enron and many other companies in the early 2000s heightened emphasis on director independence and professionalism. With the financial crisis of 2007-09, however, came a turn in some policy approaches and in academic literature seeking a different way forward. This paper explores those four phases and the discourse each develops and then links each to assumptions about accountability and cognition. After the financial crisis came pointers n policy and practice away from narrow, rationalist prescriptions and toward what the philosopher Stephen Toulmin calls “reasonableness”. Acknowledging that heightens awareness of complexity and interdependence in corporate governance practice. The paper then articulates a research agenda concerning what “reasonable” corporate governance might entail

    Comparison between the HCV IRES domain IV RNA structure and the Iron Responsive Element

    Get PDF
    Background: Serum ferritin and hepatic iron concentrations are frequently elevated in patients who are chronically infected with the hepatitis C virus (HCV), and hepatic iron concentration has been used to predict response to interferon therapy, but these correlations are not well understood. The HCV genome contains an RNA structure resembling an iron responsive element (IRE) in its internal ribosome entry site (IRES) structural domain IV (dIV). An IRE is a stem loop structure used to control the expression of eukaryotic proteins involved in iron homeostasis by either inhibiting ribosomal binding or protecting the mRNA from nuclease degradation. The HCV structure, located within the binding site of the 40S ribosomal subunit, might function as an authentic IRE or by an IRE-like mechanism.----- Results: Electrophoretic mobility shift assays showed that the HCV IRES domain IV structure does not interact with the iron regulatory protein 1 (IRP1) in vitro. Systematic HCV IRES RNA mutagenesis suggested that IRP1 cannot accommodate the shape of the wild type HCV IRES dIV RNA structure.----- Conclusion The HCV IRES dIV RNA structure is not an authentic IRE. The possibility that this RNA structure is responsible for the observed correlations between intracellular iron concentration and HCV infection parameters through an IRE-like mechanism in response to some other cellular signal remains to be tested

    Burnout among chiropractic practitioners: real or imagined an exploratory study protocol

    Get PDF
    Burnout is a psychological syndrome of emotional exhaustion, depersonalization and reduced personal accomplishment that has been found to exist in a significant number of healthcare and helping professionals. It imposes a significant societal burden by shortened practitioner lifespan, decreased efficiency, negative health outcomes and poorer levels of patient care. Theoretical models suggest that it appears to be the result of a complex interaction between job resources and job demands. It may be reasonable to conclude that Chiropractic professionals experience similar vocational demands and thus experience significant levels of occupational stress and subsequent burnout. However the data on burnout within the chiropractic profession is limited. It is possible that this results in significant negative outcomes on chiropractors and their patients. Therefore, the objective of this paper is to demonstrate the need to explore burnout in chiropractic practice and offer a research protocol for a potential study

    Endocrine Activity of Extraembryonic Membranes Extends beyond Placental Amniotes

    Get PDF
    BACKGROUND. During development, all amniotes (mammals, reptiles, and birds) form extraembryonic membranes, which regulate gas and water exchange, remove metabolic wastes, provide shock absorption, and transfer maternally derived nutrients. In viviparous (live-bearing) amniotes, both extraembryonic membranes and maternal uterine tissues contribute to the placenta, an endocrine organ that synthesizes, transports, and metabolizes hormones essential for development. Historically, endocrine properties of the placenta have been viewed as an innovation of placental amniotes. However, an endocrine role of extraembryonic membranes has not been investigated in oviparous (egg-laying) amniotes despite similarities in their basic structure, function, and shared evolutionary ancestry. In this study, we ask whether the oviparous chorioallantoic membrane (CAM) of chicken (Gallus gallus) has the capability to synthesize and receive signaling of progesterone, a major placental steroid hormone. METHODOLOGY/PRINCIPAL FINDINGS. We quantified mRNA expression of key steroidogenic enzymes involved in progesterone synthesis and found that 3β-hydroxysteroid dehydrogenase, which converts pregnenolone to progesterone exhibited a 464 fold increase in the CAM from day 8 to day 18 of embryonic development (F5, 68=89.282, p<0.0001). To further investigate progesterone synthesis, we performed explant culture and found that the CAM synthesizes progesterone in vitro in the presence of a steroid precursor. Finally, we quantified mRNA expression and performed protein immunolocalization of the progesterone receptor in the CAM. CONCLUSIONS/SIGNIFICANCE. Collectively, our data indicate that the chick CAM is steroidogenic and has the capability to both synthesize progesterone and receive progesterone signaling. These findings represent a paradigm shift in evolutionary reproductive biology by suggesting that endocrine activity of extraembryonic membranes is not a novel characteristic of placental amniotes. Rather, we hypothesize that these membranes may share an additional unifying characteristic, steroidogenesis, across amniotes at large.Sigma Xi (G20073141634396861); National Science Foundation (2008059161); UF-Howard Hughes G.A.T.O.R. Program; Howard Hughes Medical Institute Professorshi

    Modulatory Communication Signal Performance Is Associated with a Distinct Neurogenomic State in Honey Bees

    Get PDF
    Studies of animal communication systems have revealed that the perception of a salient signal can cause large-scale changes in brain gene expression, but little is known about how communication affects the neurogenomic state of the sender. We explored this issue by studying honey bees that produce a vibratory modulatory signal. We chose this system because it represents an extreme case of animal communication; some bees perform this behavior intensively, effectively acting as communication specialists. We show large differences in patterns of brain gene expression between individuals producing vibratory signal as compared with carefully matched non-senders. Some of the differentially regulated genes have previously been implicated in the performance of other motor activities, including courtship behavior in Drosophila melanogaster and Parkinson's Disease in humans. Our results demonstrate for the first time a neurogenomic brain state associated with sending a communication signal and provide suggestive glimpses of molecular roots for motor control
    corecore