25 research outputs found

    Novel treatment strategies for chronic kidney disease: insights from the animal kingdom

    Get PDF
    Many of the >2 million animal species that inhabit Earth have developed survival mechanisms that aid in the prevention of obesity, kidney disease, starvation, dehydration and vascular ageing; however, some animals remain susceptible to these complications. Domestic and captive wild felids, for example, show susceptibility to chronic kidney disease (CKD), potentially linked to the high protein intake of these animals. By contrast, naked mole rats are a model of longevity and are protected from extreme environmental conditions through mechanisms that provide resistance to oxidative stress. Biomimetic studies suggest that the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) offers protection in extreme environmental conditions and promotes longevity in the animal kingdom. Similarly, during months of fasting, immobilization and anuria, hibernating bears are protected from muscle wasting, azotaemia, thrombotic complications, organ damage and osteoporosis - features that are often associated with CKD. Improved understanding of the susceptibility and protective mechanisms of these animals and others could provide insights into novel strategies to prevent and treat several human diseases, such as CKD and ageing-associated complications. An integrated collaboration between nephrologists and experts from other fields, such as veterinarians, zoologists, biologists, anthropologists and ecologists, could introduce a novel approach for improving human health and help nephrologists to find novel treatment strategies for CKD

    Manipulating the exposome to enable better ageing

    Get PDF
    The sum total of life course exposures creates an exposome that has a significant impact on age-related health. Understanding the interplay between exposome factors and the (epi) genome, offers pertinent insights into the ageing process and its relationship with the accumulation of allostatic load. We propose to exploit this to develop a biomimetic approach that will provide insight into how evolution through natural selection in other species has solved many age related human health issues. In particular, we will emphasise the need to reconnect a more mechanistic approach to medical science with a broader natural sciences approach, using biomimetics to mitigate the global burden of age related ill health. In particular, we will discuss how such an approach indicates leverage of the activities of the Nrf 2 gene to enhance health span via reintroduction of the classical 'Food as Medicine' concept, including modulation of the microbiome and the creation of more salutogenic and biophilic environments. Additionally, we will discuss how this approach integrates with novel and developing senotherapies

    Muscle nonshivering thermogenesis in a feral mammal

    Get PDF
    Muscle nonshivering thermogenesis (NST) was recently suggested to play an important role in thermoregulation of species lacking brown adipose tissue (BAT). The mechanism, which is independent of muscle contractions, produces heat based on the activity of an ATPase pump in the sarcoplasmic reticulum (SERCA1a) and is controlled by the protein sarcolipin. To evaluate whether muscle NST could indeed play an important role in thermoregulation in species lacking BAT, we investigated the thermogenic capacities of newborn wild boar piglets. During cold exposure over the first 5 days of life, total heat production was improved while shivering intensity decreased, indicating an increasing contribution of NST. Sampling skeletal muscle tissue for analyses of SERCA activity as well as gene expression of SERCA1a and sarcolipin, we found an age-related increase in all three variables as well as in body temperature. Hence, the improved thermogenesis during the development of wild boars is not due to shivering but explained by the observed increase in SERCA activity. Our results suggest that muscle NST may be the primary mechanism of heat production during cold stress in large mammals lacking BAT, strengthening the hypothesis that muscle NST has likely played an important role in the evolution of endothermy

    Formerly bile-farmed bears as a model of accelerated ageing

    Get PDF
    Bear bile-farming is common in East and Southeast Asia and this farming practice often results in irreversible health outcomes for the animals. We studied long-term effects of chronic bacterial and sterile hepatobiliary inflammation in 42 Asiatic black bears (Ursus thibetanus) rescued from Vietnamese bile farms. The bears were examined under anesthesia at least twice as part of essential medical interventions. All bears were diagnosed with chronic low-grade sterile or bacterial hepatobiliary inflammation along with pathologies from other systems. Our main finding was that the chronic low-grade inflammatory environment associated with bile extraction in conjunction with the suboptimal living conditions on the farms promoted and accelerated the development of age-related pathologies such as chronic kidney disease, obese sarcopenia, cardiovascular remodeling, and degenerative joint disease. Through a biomimetic approach, we identified similarities with inflammation related to premature aging in humans and found significant deviations from the healthy ursid phenotype. The pathological parallels with inflammageing and immuno-senescence induced conditions in humans suggest that bile-farmed bears may serve as animal models to investigate pathophysiology and deleterious effects of lifestyle-related diseases

    Insights in the regulation of trimetylamine N-oxide production using a comparative biomimetic approach suggest a metabolic switch in hibernating bears

    Get PDF
    Experimental studies suggest involvement of trimethylamine N-oxide (TMAO) in the aetiology of cardiometabolic diseases and chronic kidney disease (CKD), in part via metabolism of ingested food. Using a comparative biomimetic approach, we have investigated circulating levels of the gut metabolites betaine, choline, and TMAO in human CKD, across animal species as well as during hibernation in two animal species. Betaine, choline, and TMAO levels were associated with renal function in humans and differed significantly across animal species. Free-ranging brown bears showed a distinct regulation pattern with an increase in betaine (422%) and choline (18%) levels during hibernation, but exhibited undetectable levels of TMAO. Free-ranging brown bears had higher betaine, lower choline, and undetectable TMAO levels compared to captive brown bears. Endogenously produced betaine may protect bears and garden dormice during the vulnerable hibernating period. Carnivorous eating habits are linked to TMAO levels in the animal kingdom. Captivity may alter the microbiota and cause a subsequent increase of TMAO production. Since free-ranging bears seems to turn on a metabolic switch that shunts choline to generate betaine instead of TMAO, characterisation and understanding of such an adaptive switch could hold clues for novel treatment options in burden of lifestyle diseases, such as CKD

    Thermal Adaptation and Diversity in Tropical Ecosystems: Evidence from Cicadas (Hemiptera, Cicadidae)

    Get PDF
    The latitudinal gradient in species diversity is a central problem in ecology. Expeditions covering approximately 16°54′ of longitude and 21°4′ of latitude and eight Argentine phytogeographic regions provided thermal adaptation data for 64 species of cicadas. We test whether species diversity relates to the diversity of thermal environments within a habitat. There are general patterns of the thermal response values decreasing in cooler floristic provinces and decreasing maximum potential temperature within a habitat except in tropical forest ecosystems. Vertical stratification of the plant communities leads to stratification in species using specific layers of the habitat. There is a decrease in thermal tolerances in species from the understory communities in comparison to middle level or canopy fauna. The understory Herrera umbraphila Sanborn & Heath is the first diurnally active cicada identified as a thermoconforming species. The body temperature for activity in H. umbraphila is less than and significantly different from active body temperatures of all other studied species regardless of habitat affiliation. These data suggest that variability in thermal niches within the heterogeneous plant community of the tropical forest environments permits species diversification as species adapt their physiology to function more efficiently at temperatures different from their potential competitors
    corecore