792 research outputs found
Doing more with less: Teacher professional learning communities in resource-constrained primary schools in rural China.
Teacher professional learning communities provide environments in which teachers engage in regular research and collaboration. They have been found effective as a means for connecting professional learning to the day-to-day realities faced by teachers in the classroom. In this article, the authors draw on survey data collected in primary schools serving 71 villages in rural Gansu Province as well as transcripts from in-depth interviews with 30 teachers. Findings indicate that professional learning communities penetrate to some of China’s most resource-constrained schools but that their nature and development are shaped by institutional supports, principal leadership, and teachers’ own initiative
Biochemical Comparison of Anopheles gambiae and Human NADPH P450 Reductases Reveals Different 2′-5′-ADP and FMN Binding Traits
NADPH-cytochrome P450 oxidoreductase (CPR) plays a central role in chemical
detoxification and insecticide resistance in Anopheles gambiae,
the major vector for malaria. Anopheles gambiae CPR (AgCPR) was
initially expressed in Eschericia coli but failed to bind
2′, 5′-ADP Sepharose. To investigate this unusual trait, we
expressed and purified a truncated histidine-tagged version for side-by-side
comparisons with human CPR. Close functional similarities were found with
respect to the steady state kinetics of cytochrome c reduction,
with rates (kcat) of 105
s−1 and 88 s−1, respectively, for mosquito
and human CPR. However, the inhibitory effects of 2′,5′-ADP on
activity were different; the IC50 value of AgCPR for 2′,
5′ –ADP was significantly higher (6–10 fold) than human CPR
(hCPR) in both phosphate and phosphate-free buffer, indicative of a decrease in
affinity for 2′, 5′- ADP. This was confirmed by isothermal titration
calorimetry where binding of 2′,5′-ADP to AgCPR
(Kd = 410±18 nM) was
∼10 fold weaker than human CPR
(Kd = 38 nM). Characterisation
of the individual AgFMN binding domain revealed much weaker binding of FMN
(Kd = 83±2.0 nM) than the equivalent
human domain (Kd = 23±0.9 nM).
Furthermore, AgCPR was an order of magnitude more sensitive than hCPR to the
reductase inhibitor diphenyliodonium chloride
(IC50 = 28 µM±2 and 361±31
µM respectively). Taken together, these results reveal unusual biochemical
differences between mosquito CPR and the human form in the binding of small
molecules that may aid the development of ‘smart’ insecticides and
synergists that selectively target mosquito CPR
Lunar Flashlight: Mapping Lunar Surface Volatiles Using a Cubesat
No abstract availabl
A high-throughput HPLC method for simultaneous quantification of pyrethroid and pyriproxyfen in long-lasting insecticide-treated nets
Long-lasting insecticide-treated nets (LLINs) play a crucial role in preventing malaria transmission. LLINs should remain effective for at least three years, even after repeated washings. Currently, monitoring insecticides in LLINs is cumbersome, costly, and requires specialized equipment and hazardous solvents. Our aim was to develop a simple, high-throughput and low-resource method for measuring insecticides in LLINs. To extract insecticides, polyethylene-LLIN samples were heated at 85 °C for 45 min in a non-hazardous solvent mix containing dicyclohexylphthalate as an internal standard. The extraction solvent was reduced from 50 to 5 ml using a 0.2 g sample, 90% smaller than the recommended sample size. By optimizing HPLC chromatography, we simultaneously detected pyrethroid and pyriproxyfen insecticides with high sensitivity in LLIN's extract. The method can quantify levels ≥ 0.0015% permethrin, 0.00045% alpha-cypermethrin and 0.00025% pyriproxyfen (w/w) in polyethylene, allowing for insecticide tracking before and after the use of LLINs. This method can be used to assess LLINs with 1% pyriproxyfen (pyriproxyfen-LLIN) or 2% permethrin (Olyset® Net), 1% pyriproxyfen and 2% permethrin (Olyset® Duo), or 0.55% pyriproxyfen and 0.55% alpha-cypermethrin (Royal Gaurd®). One can run 120 samples (40 nets) simultaneously with high precision and accuracy, improving throughput and reducing labour, costs, and environmental impact
Large Scale Application of Self-Healing Concrete: Design, Construction, and Testing
Materials for Life (M4L) was a 3 year, EPSRC funded, research project carried out by the Universities of Cardiff, Bath and Cambridge to investigate the development of self-healing cementitious construction materials. This paper describes the UK's first site trial of self-healing concrete, which was the culmination of that project. The trial comprised the in-situ construction of five concrete panels using a range of self-healing technologies within the site compound of the A465 Heads of the Valleys Highway upgrading project. Four self-healing techniques were used both individually and in combination with one another. They were: (i) the use of microcapsules developed by the University of Cambridge, in collaboration with industry, containing mineral healing agents, (ii) bacterial healing using the expertise developed at Bath University, (iii) the use of a shape memory polymer (SMP) based system for crack closure and (iv) the delivery of a mineral healing agent through a vascular flow network. Both of the latter, (iii) and (iv), were the product of research undertaken at Cardiff University. This paper describes the design, construction, testing, and monitoring of these trial panels and presents the primary findings of the exercise. The challenges that had to be overcome to incorporate these self-healing techniques into full-scale structures on a live construction site are highlighted, the impact of the different techniques on the behavior of the panels when subject to loading is presented and the ability of the techniques used to heal the cracks that were generated is discussed.The work reported in this paper was carried out as part of the EPSRC funded project Materials for Life (M4L), reference EP/K026631/1 and supported with PhD studentship funding from Costain Group PLC
PUGeo-Net: A Geometry-centric Network for 3D Point Cloud Upsampling
This paper addresses the problem of generating uniform dense point clouds to
describe the underlying geometric structures from given sparse point clouds.
Due to the irregular and unordered nature, point cloud densification as a
generative task is challenging. To tackle the challenge, we propose a novel
deep neural network based method, called PUGeo-Net, that learns a
linear transformation matrix for each input point. Matrix
approximates the augmented Jacobian matrix of a local parameterization and
builds a one-to-one correspondence between the 2D parametric domain and the 3D
tangent plane so that we can lift the adaptively distributed 2D samples (which
are also learned from data) to 3D space. After that, we project the samples to
the curved surface by computing a displacement along the normal of the tangent
plane. PUGeo-Net is fundamentally different from the existing deep learning
methods that are largely motivated by the image super-resolution techniques and
generate new points in the abstract feature space. Thanks to its
geometry-centric nature, PUGeo-Net works well for both CAD models with sharp
features and scanned models with rich geometric details. Moreover, PUGeo-Net
can compute the normal for the original and generated points, which is highly
desired by the surface reconstruction algorithms. Computational results show
that PUGeo-Net, the first neural network that can jointly generate vertex
coordinates and normals, consistently outperforms the state-of-the-art in terms
of accuracy and efficiency for upsampling factor .Comment: 17 pages, 10 figure
Outcomes of decompression for lumbar spinal canal stenosis based upon preoperative radiographic severity
BACKGROUND: The relationship between severity of preoperative radiographic findings and surgical outcomes following decompression for lumbar degenerative spinal canal stenosis is unclear. Our aim in this paper was to gain insight into this relationship. We determined pre-operative radiographic severity on MRI scans using strict methodological controls and correlated such severity with post-operative outcomes using prospectively collected data. METHODS: Twenty-seven consecutive patients undergoing decompression for isolated degenerative spinal canal stenosis at L4-L5 were included. We measured cross-sectional area on MRI using the technique of Hamanishi. We categorized the severity of stenosis using Laurencin and Lipson's 'Stenosis Ratio'. We determined pre-operative status (prospectively) and post-operative outcomes using Weiner and Fraser's 'Neurogenic Claudication Outcome Score'. We determined patient satisfaction using standardized questionnaires. Each of these is a validated measure. Formal statistical evaluation was undertaken. RESULTS: No patients (0 of 14) with a greater than 50% reduction in cross-sectional area on pre-operative MRI had unsatisfactory outcomes. In contrast, outcomes for patients with less than or equal to 50% reduction in cross-sectional area had unsatifactory outcomes in 6 of 13 cases, with all but one negative outcome having a cross-sectional area reduction between 32% and 47%. CONCLUSION: The findings suggest that there appears to be a relationship between severity of stenosis and outcomes of decompressive surgery such that patients with a greater than 50% reduction in cross sectional area are more likely to have a successful outcome
Musical organics: a heterarchical approach to digital organology
Gaining a comprehensive understanding of new musical technologies is fraught with difficulties. The digital materials from which they are formed are of such diverse origins and nature, that they do not match traditional organological classifications. This article traces the history of musical instrument classifications relevant to the understanding of new instruments, and proposes an alternative approach to the centuries-old tree-structure of downwards divisions. The proposed musical organics is a multi-dimensional, heterarchical, and organic approach to the analysis and classification of both traditional and new musical instruments that suits the rhizomatic nature of their material design and technical origins. Outlines of a hypothetical organological informatics retrieval system are also presented
Regulation of pH During Amelogenesis
During amelogenesis, extracellular matrix proteins interact with growing hydroxyapatite crystals to create one of the most architecturally complex biological tissues. The process of enamel formation is a unique biomineralizing system characterized first by an increase in crystallite length during the secretory phase of amelogenesis, followed by a vast increase in crystallite width and thickness in the later maturation phase when organic complexes are enzymatically removed. Crystal growth is modulated by changes in the pH of the enamel microenvironment that is critical for proper enamel biomineralization. Whereas the genetic bases for most abnormal enamel phenotypes (amelogenesis imperfecta) are generally associated with mutations to enamel matrix specific genes, mutations to genes involved in pH regulation may result in severely affected enamel structure, highlighting the importance of pH regulation for normal enamel development. This review summarizes the intra- and extracellular mechanisms employed by the enamel-forming cells, ameloblasts, to maintain pH homeostasis and, also, discusses the enamel phenotypes associated with disruptions to genes involved in pH regulation
Can forest management based on natural disturbances maintain ecological resilience?
Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance
- …