6 research outputs found

    Analysis of Cd44-Containing Lipid Rafts: Recruitment of Annexin II and Stabilization by the Actin Cytoskeleton

    Get PDF
    CD44, the major cell surface receptor for hyaluronic acid (HA), was shown to localize to detergent-resistant cholesterol-rich microdomains, called lipid rafts, in fibroblasts and blood cells. Here, we have investigated the molecular environment of CD44 within the plane of the basolateral membrane of polarized mammary epithelial cells. We show that CD44 partitions into lipid rafts that contain annexin II at their cytoplasmic face. Both CD44 and annexin II were released from these lipid rafts by sequestration of plasma membrane cholesterol. Partition of annexin II and CD44 to the same type of lipid rafts was demonstrated by cross-linking experiments in living cells. First, when CD44 was clustered at the cell surface by anti-CD44 antibodies, annexin II was recruited into the cytoplasmic leaflet of CD44 clusters. Second, the formation of intracellular, submembranous annexin II–p11 aggregates caused by expression of a trans-dominant mutant of annexin II resulted in coclustering of CD44. Moreover, a frequent redirection of actin bundles to these clusters was observed. These basolateral CD44/annexin II–lipid raft complexes were stabilized by addition of GTPγS or phalloidin in a semipermeabilized and cholesterol-depleted cell system. The low lateral mobility of CD44 in the plasma membrane, as assessed with fluorescent recovery after photobleaching (FRAP), was dependent on the presence of plasma membrane cholesterol and an intact actin cytoskeleton. Disruption of the actin cytoskeleton dramatically increased the fraction of CD44 which could be recovered from the light detergent-insoluble membrane fraction. Taken together, our data indicate that in mammary epithelial cells the vast majority of CD44 interacts with annexin II in lipid rafts in a cholesterol-dependent manner. These CD44-containing lipid microdomains interact with the underlying actin cytoskeleton

    Perturbation of the tight junction permeability barrier by occludin loop peptides activates β-catenin/TCF/LEF-mediated transcription

    No full text
    Here we show that interference with the integrity of the transepithelial permeability barrier of mouse mammary epithelial cells by treatment with synthetic peptides, homologous to the second extracellular domain of occludin, decreased the amount of occludin protein present at tight junctions and led to the formation of multilayered, unpolarized cell clusters. In addition, transcription of the adherens junction protein β-catenin was induced. Following accumulation of soluble β-catenin protein, transcription by β-catenin/TCF/LEF was increased, as revealed by transcriptional assays following transient transfection of the reporter construct. Furthermore, treatment with occludin-II peptides up-regulated RNA levels of the known β-catenin/TCF/LEF downstream target gene c-myc. The data presented imply a functional cross-talk between tight and adherens junctions that possibly contributes to the stepwise transformation during oncogenesis

    At

    No full text
    growth cones as they cross the midline. But how doe

    Both Calmodulin and the Unconventional Myosin Myr4 Regulate Membrane Trafficking Along the Recycling Pathway of MDCK Cells

    No full text
    In epithelial cells, endocytosed transferrin and its receptor, which cycle basolaterally, have been shown to transit through recycling endosomes which can also be accessed by markers internalized from the apical surface. In this work, we have used an in vitro assay to follow transfer of an endocytosed marker from apical or basolateral early endosomes to recycling endosomes labeled with transferrin. We show that calmodulin (CaM) function is necessary for transfer and identified myr4, a member of the unconventional myosin superfamily known to use CaM as a light chain, as a possible target protein for CaM. Since myr4 is believed to act as an actin‐based mechanoenzyme, we tested the role of polymerized actin in the assay. Our data show that conditions which either prevent actin polymerization or induce the breakdown of existing filaments strongly inhibit interactions between recycling endosomes and either set of early endosomes. Altogether, our data indicate that trafficking at early steps of the endocytic pathway in Madin–Darby Canine Kidney cells depends on the actin‐based mechanoenzyme myr4, its light chain CaM, and polymerized actin. </p
    corecore