15 research outputs found

    The oxidoreductase PYROXD1 uses NAD(P)+ as an antioxidant to sustain tRNA ligase activity in pre-tRNA splicing and unfolded protein response

    Get PDF
    The tRNA ligase complex (tRNA-LC) splices precursor tRNAs (pre-tRNA), and Xbp1-mRNA during the unfolded protein response (UPR). In aerobic conditions, a cysteine residue bound to two metal ions in its ancient, catalytic subunit RTCB could make the tRNA-LC susceptible to oxidative inactivation. Here, we confirm this hypothesis and reveal a co-evolutionary association between the tRNA-LC and PYROXD1, a conserved and essential oxidoreductase. We reveal that PYROXD1 preserves the activity of the mammalian tRNA-LC in pre-tRNA splicing and UPR. PYROXD1 binds the tRNA-LC in the presence of NAD(P)H and converts RTCB-bound NAD(P)H into NAD(P)+, a typical oxidative co-enzyme. However, NAD(P)+ here acts as an antioxidant and protects the tRNA-LC from oxidative inactivation, which is dependent on copper ions. Genetic variants of PYROXD1 that cause human myopathies only partially support tRNA-LC activity. Thus, we establish the tRNA-LC as an oxidation-sensitive metalloenzyme, safeguarded by the flavoprotein PYROXD1 through an unexpected redox mechanism

    Apelin inhibition prevents resistance and metastasis associated with anti-angiogenic therapy

    Get PDF
    Angiogenesis is a hallmark of cancer, promoting growth and metastasis. Anti-angiogenic treatment has limited efficacy due to therapy-induced blood vessel alterations, often followed by local hypoxia, tumor adaptation, progression, and metastasis. It is therefore paramount to overcome therapy-induced resistance. We show that Apelin inhibition potently remodels the tumor microenvironment, reducing angiogenesis, and effectively blunting tumor growth. Functionally, targeting Apelin improves vessel function and reduces polymorphonuclear myeloid-derived suppressor cell infiltration. Importantly, in mammary and lung cancer, Apelin prevents resistance to anti-angiogenic receptor tyrosine kinase (RTK) inhibitor therapy, reducing growth and angiogenesis in lung and breast cancer models without increased hypoxia in the tumor microenvironment. Apelin blockage also prevents RTK inhibitorinduced metastases, and high Apelin levels correlate with poor prognosis of anti-angiogenic therapy patients. These data identify a druggable anti-angiogenic drug target that reduces tumor blood vessel densities and normalizes the tumor vasculature to decrease metastases

    Sleep apnea and the risk of dementia: a population-based 5-year follow-up study in Taiwan.

    Get PDF
    BACKGROUND:Sleep apnea (SA) has been associated with cognitive impairment. However, no data regarding the risk of dementia in patients with SA has been reported in the general population. This retrospective matched-control cohort study was designed to estimate and compare the risk of dementia in SA and non-SA patients among persons aged 40 and above over a 5-year period follow-up. METHODS:We conducted a nationwide 5-year population-based study using data retrieved from the Longitudinal Health Insurance Database 2005 (LHID2005) in Taiwan. The study cohort comprised 1414 patients with SA aged 40 years who had at least 1 inpatient service claim or 1 ambulatory care claim. The comparison cohort comprised 7070 randomly selected patients who were matched with the study group according to sex, age, and index year. We performed Cox proportional-hazards regressions to compute the 5-year dementia-free survival rates after adjusting for potentially confounding factors. RESULTS:The SA patients in this study had a 1.70-times greater risk of developing dementia within 5 years of diagnosis compared to non-SA age- and sex-matched patients, after adjusting for other risk factors (95% confidence interval (CI) = 1.26-2.31; P < .01). For the gender-dependent effect, only females with SA were more likely to develop dementia (adjust HR: 2.38, 95% CI =1.51-3.74; P < .001). For the age-dependent effect of different genders, males with SA aged 50-59 years had a 6.08 times greater risk for developing dementia (95% CI = 1.96-18.90), and females with SA aged ≥ 70 years had a 3.20 times greater risk of developing dementia (95% CI =1.71-6.00). For the time-dependent effect, dementia may be most likely to occur in the first 2.5 years of follow-up (adjusted HR:2.04, 95% CI =1.35-3.07). CONCLUSIONS:SA may be a gender-dependent, age-dependent, and time-dependent risk factor for dementia

    Clinical Outcomes of Single Mosaic Embryo Transfer: High-Level or Low-Level Mosaic Embryo, Does It Matter?

    No full text
    Recently, reports showed that embryos identified as mosaic after preimplantation genetic testing for aneuploid (PGT-A) could result in live birth with lower pregnancy and higher pregnancy loss rates compared with euploid embryos. However, the effects of mosaicism level on reproductive outcomes remain controversial. This study aimed to examine the level of mosaicism on pregnancy outcomes. Single mosaic embryo transfer was offered to 108 women who only had mosaic embryos. Mosaic embryos were labeled by utilizing next generation sequencing (NGS) based PGT-A for day 5/6 trophectoderm (TE) biopsies. TE biopsies containing &lt; 50% abnormal cells were classified as low-level mosaicism and &ge; 50% as high-level mosaicism. To further confirm the concordance of chromosome constitution between TE and inner cell mass (ICM), 41 remaining embryos designated as mosaic blastocysts donated for research were also analyzed. Comparable live birth rate (LBR) but higher miscarriage rate (MR) was found in the high-level group. (LBR: low vs. high: 44.5% vs. 36%; p = 0.45, MR: low vs. high: 5.1% vs. 30.7%; p = 0.012). Analyses of TE and ICM from the remaining mosaic blastocysts show a poor concordance. This preliminary study demonstrated that high-level mosaic embryos could result in comparable LBR but higher MR

    ASC-J9 Blocks Cell Proliferation and Extracellular Matrix Production of Keloid Fibroblasts through Inhibiting STAT3 Signaling

    No full text
    Keloids are a fibrotic skin disorder caused by abnormal wound healing and featuring the activation and expansion of fibroblasts beyond the original wound margin. Signal transducer and activator of transcription 3 (STAT3) has been found to mediate the biological functions of keloid fibroblasts (KFs). Therefore, we aimed to demonstrate whether ASC-J9, an inhibitor of STAT3 phosphorylation, can suppress the activation of KFs. Western blotting results showed that ASC-J9 inhibited the levels of COL1A1 and FN1 proteins, which were upregulated in KFs, by decreasing the expression of pSTAT3 and STAT3. RNA sequencing and in vitro studies further demonstrated that ASC-J9 treatment of KFs reduced cell division, inflammation, and ROS generation, as well as extracellular matrix (ECM) synthesis. ELISA assays verified that ASC-J9 treatment significantly mitigated IL-6 protein secretion in KFs. Transmission electron microscopy images revealed that ASC-J9 induced the formation of multilamellar bodies in KFs, which is associated with autophagy-related signaling. These results suggested that inhibiting a vicious cycle of the ROS/STAT3/IL-6 axis by ASC-J9 may represent a potential therapeutic approach to suppress cell proliferation and ECM production in KFs

    Association between Kawasaki Disease and Autism: A Population-Based Study in Taiwan

    No full text
    Objective: The association between Kawasaki disease and autism has rarely been studied in Asian populations. By using a nationwide Taiwanese population-based claims database, we tested the hypothesis that Kawasaki disease may increase the risk of autism in Taiwan. Materials and Methods: Our study cohort consisted of patients who had received the diagnosis of Kawasaki disease (ICD-9-CM: 446.1) between 1997 and 2005 (N = 563). For a comparison cohort, five age- and gender-matched control patients for every patient in the study cohort were selected using random sampling (N = 2,815). All subjects were tracked for 5 years from the date of cohort entry to identify whether they had developed autism (ICD-9-CM code 299.0) or not. Cox proportional hazard regressions were then performed to evaluate 5-year autism-free survival rates. Results: The main finding of this study was that patients with Kawasaki disease seem to not be at increased risk of developing autism. Of the total patients, four patients developed autism during the 5-year follow-up period, among whom two were Kawasaki disease patients and two were in the comparison cohort. Further, the adjusted hazard ratios (AHR) (AHR: 4.81; 95% confidence interval: 0.68–34.35; P = 0.117) did not show any statistical significance between the Kawasaki disease group and the control group during the 5-year follow-up. Conclusion: Our study indicated that patients with Kawasaki disease are not at increased risk of autism

    Evidence for bidirectional and trans-synaptic parasympathetic and sympathetic propagation of alpha-synuclein in rats

    No full text
    The conversion of endogenous alpha-synuclein (asyn) to pathological asyn-enriched aggregates is a hallmark of Parkinson’s disease (PD). These inclusions can be detected in the central and enteric nervous system (ENS). Moreover, gastrointestinal symptoms can appear up to 20 years before the diagnosis of PD. The dual-hit hypothesis posits that pathological asyn aggre-gation starts in the ENS, and retrogradely spreads to the brain. In this study, we tested this hypothesis by directly injecting preformed asyn fibrils into the duodenum wall of wild-type rats and transgenic rats with excess levels of human asyn. We provide a meticulous characterization of the bacterial artificial chromosome (BAC) transgenic rat model with respect to ini-tial propagation of pathological asyn along the parasympathetic and sympathetic pathways to the brainstem, by performing immunohistochemistry at early time points post-injection. Induced pathology was observed in all key structures along the sympathetic and parasympathetic pathways (ENS, autonomic ganglia, intermediolateral nucleus of the spinal cord (IML), heart, dorsal motor nucleus of the vagus, and locus coeruleus (LC)) and persisted for at least 4 months post-injection. In contrast, asyn propagation was not detected in wild-type rats, nor in vehicle-injected BAC rats. The presence of pathology in the IML, LC, and heart indicate trans-synaptic spread of the pathology. Additionally, the observed asyn inclusions in the stomach and heart may indicate secondary anterograde propagation after initial retrograde spreading. In summary, trans-synaptic propagation of asyn in the BAC rat model is fully compatible with the “body-first hypothesis” of PD etiopatho-genesis. To our knowledge, this is the first animal model evidence of asyn propagation to the heart, and the first indication of bidirectional asyn propagation via the vagus nerve, i.e., duodenum-to-brainstem-to-stomach. The BAC rat model could be very valuable for detailed mechanistic studies of the dual-hit hypothesis, and for studies of disease modifying therapies targeting early pathology in the gastrointestinal tract

    The Feasibility of Differentiating Lewy Body Dementia and Alzheimer’s Disease by Deep Learning Using ECD SPECT Images

    No full text
    The correct differential diagnosis of dementia has an important impact on patient treatment and follow-up care strategies. Tc-99m-ECD SPECT imaging, which is low cost and accessible in general clinics, is used to identify the two common types of dementia, Alzheimer’s disease (AD) and Lewy body dementia (LBD). Two-stage transfer learning technology and reducing model complexity based on the ResNet-50 model were performed using the ImageNet data set and ADNI database. To improve training accuracy, the three-dimensional image was reorganized into three sets of two-dimensional images for data augmentation and ensemble learning, then the performance of various deep learning models for Tc-99m-ECD SPECT images to distinguish AD/normal cognition (NC), LBD/NC, and AD/LBD were investigated. In the AD/NC, LBD/NC, and AD/LBD tasks, the AUC values were around 0.94, 0.95, and 0.74, regardless of training models, with an accuracy of 90%, 87%, and 71%, and F1 scores of 89%, 86%, and 76% in the best cases. The use of transfer learning and a modified model resulted in better prediction results, increasing the accuracy by 32% for AD/NC. The proposed method is practical and could rapidly utilize a deep learning model to automatically extract image features based on a small number of SPECT brain perfusion images in general clinics to objectively distinguish AD and LBD
    corecore