158 research outputs found

    Spatial and Temporal Trends in Mineral Dust Provenance in the South Pacific—Evidence From Mixing Models

    Get PDF
    Mineral dust is an important component of the Earth system due to its role in oceanic nutrient supply, cloud formation and its radiative properties. Changes in transport pathways and fluxes of mineral dust have attracted increased attention using radiogenic isotope analysis for detailed investigation of changing dust sources through time. However, multi-isotope studies provide complex datasets of dust provenance, often without exact quantification of source contributions. Here we use Bayesian mixing models and existing radiogenic isotope data to quantify changes in South Pacific dust provenance for the Holocene and the Last Glacial Maximum (LGM; ∼18–24 ka BP). Testing different model configurations showed grouping small source regions to single continental scale end members prior to modeling can lead to biased results, and so we group model outputs post-modeling. During the LGM, a higher proportion (mean 53%) of dust entering the South Pacific was South American in origin, compared to a Holocene mean of 31%. In contrast, Australian dust contributions were lower during the LGM (mean 38%) than Holocene (mean 55%), with significant spatial gradients for both time slices. In the subpolar South Pacific, the high representation of South American dust during the LGM (up to ∼75%) coincides with larger dust particles; together indicating that far-traveled dust transport was facilitated by long atmospheric residence times and an accelerated westerly wind circulation during this time. Our study shows how Bayesian mixing models provide valuable constraints for dust source contributions, an approach which may help in the calibration of atmospheric models, using complex isotopic datasets

    Separating individual contributions of major Siberian rivers in the Transpolar Drift of the Arctic Ocean

    Get PDF
    The Siberian rivers supply large amounts of freshwater and terrestrial derived material to the Arctic Ocean. Although riverine freshwater and constituents have been identified in the central Arctic Ocean, the individual contributions of the Siberian rivers to and their spatiotemporal distributions in the Transpolar Drift (TPD), the major wind-driven current in the Eurasian sector of the Arctic Ocean, are unknown. Determining the influence of individual Siberian rivers downstream the TPD, however, is critical to forecast responses in polar and sub-polar hydrography and biogeochemistry to the anticipated individual changes in river discharge and freshwater composition. Here, we identify the contributions from the largest Siberian river systems, the Lena and Yenisei/Ob, in the TPD using dissolved neodymium isotopes and rare earth element concentrations. We further demonstrate their vertical and lateral separation that is likely due to distinct temporal emplacements of Lena and Yenisei/Ob waters in the TPD as well as prior mixing of Yenisei/Ob water with ambient waters

    Eastern tropical Pacific hydrologic changes during the past 27,000 years from D/H ratios in alkenones

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 22 (2007): PA4214, doi:10.1029/2007PA001468.The tropical Pacific plays a central role in the climate system by providing large diabatic heating that drives the global atmospheric circulation. Quantifying the role of the tropics in late Pleistocene climate change has been hampered by the paucity of paleoclimate records from this region and the lack of realistic transient climate model simulations covering this period. Here we present records of hydrogen isotope ratios (δD) of alkenones from the Panama Basin off the Colombian coast that document hydrologic changes in equatorial South America and the eastern tropical Pacific over the past 27,000 years (a) and the past 3 centuries in detail. Comparison of alkenone δD values with instrumental records of precipitation over the past ∼100 a suggests that δD can be used as a hydrologic proxy. On long timescales our records indicate reduced rainfall during the last glacial period that can be explained by a southward shift of the mean position of the Intertropical Convergence Zone and an associated reduction of Pacific moisture transport into Colombia. Precipitation increases at ∼17 ka in concert with sea surface temperature (SST) cooling in the North Atlantic and the eastern tropical Pacific. A regional coupled model, forced by negative SST anomalies in the Caribbean, simulates an intensification of northeasterly trade winds across Central America, increased evaporative cooling, and a band of increased rainfall in the northeastern tropical Pacific. These results are consistent with the alkenone SST and δD reconstructions that suggest increasing precipitation and SST cooling at the time of Heinrich event 1.K. P. and J. P. S. thank the Comer Science and Education Foundation for financial support. J. P. S. acknowledges support by the National Science Foundation (grant NSF-ESH-0639640). NSF grant OCE-0317702 funded cruise KNR176 to the Panama Basin and L. D. K.’s results presented here. A. T. is supported by the Japan Agency for Marine-Earth Science and Technology. S. P. X. is supported by the National Oceanic and Atmospheric Administration CLIVAR Program, the Japan Ministry of Education, Culture, Science and Technology through the Kyosei-7 Project, and the Japan Agency for Marine-Earth Science and Technology

    The influence of basaltic islands on the oceanic REE distribution: A case study from the tropical South Pacific

    Get PDF
    The Rare Earth Elements (REEs) have been widely used to investigate marine biogeochemical processes as well as the sources and mixing of water masses. However, there are still important uncertainties about the global aqueous REE cycle with respect to the contributions of highly reactive basaltic minerals originating from volcanic islands and the role of Submarine Groundwater Discharge (SGD). Here we present dissolved REE concentrations obtained from waters at the island-ocean interface (including SGD, river, lagoon and coastal waters) from the island of Tahiti and from three detailed open ocean profiles on the Manihiki Plateau (including neodymium (Nd) isotope compositions), which are located in ocean currents downstream of Tahiti. Tahitian fresh waters have highly variable REE concentrations that likely result from variable water–rock interaction and removal by secondary minerals. In contrast to studies on other islands, the SGD samples do not exhibit elevated REE concentrations but have distinctive REE distributions and Y/Ho ratios. The basaltic Tahitian rocks impart a REE pattern to the waters characterized by a middle REE enrichment, with a peak at europium similar to groundwaters and coastal waters of other volcanic islands in the Pacific. However, the basaltic island REE characteristics (with the exception of elevated Y/Ho ratios) are lost during transport to the Manihiki Plateau within surface waters that also exhibit highly radiogenic Nd isotope signatures. Our new data demonstrate that REE concentrations are enriched in Tahitian coastal water, but without multidimensional sampling, basaltic island Nd flux estimates range over orders of magnitude from relatively small to globally significant. Antarctic Intermediate Water (AAIW) loses its characteristic Nd isotopic signature (-6 to-9) around the Manihiki Plateau as a consequence of mixing with South Equatorial Pacific Intermediate Water (SEqPIW), which shows more positive values (-1 to -2). However, an additional Nd input/exchange along the pathway of AAIW, eventually originating from the volcanic Society, Tuamotu and Tubuai Islands (including Tahiti), is indicated by an offset from the mixing array of AAIW and SEqPIW to more radiogenic Nd isotope compositions

    Controls on Erosion in the Western Tarin Basin: Implications for the Uplift of Northwest Tibet and the Parmir

    Get PDF
    We present here bulk sediment major element chemistry, Nd and Sr isotope ratios, and detrital apatite fission-track (AFT) and U-Pb zircon ages to characterize the provenance of the southwestern Taklimakan Desert (northwest China) and the three major rivers draining this region. We establish the spatial and temporal controls on erosion and sediment transport in the modern Tibetan rain shadow. The Hotan River drains the North Kunlun block and is characterized by zircon populations at 160–230 Ma and 370–520 Ma. The Yarkand River shares these grains with the Hotan, but also has a very prominent zircon population at 40–160 Ma, which is common in Karakoram basement, indicating heavy sediment flux from these ranges to that drainage. This implies a strong control on erosion by topographic steepness and precipitation mediated through glaciation. Our zircon data confirm earlier studies that indicated that the Taklimakan sand is derived from both the Kunlun and Pamir Mountains. AFT ages are younger in the Hotan River than in the Kashgar River, which drains the Pamir, and in both are younger than in the Transhimalaya and parts of the western edge of the Tibetan Plateau. Exhumation is estimated at ∼1000 m/m.y. in the North Kunlun and ∼500 m/m.y. in the eastern Pamir, which have been exhuming more slowly than the western ranges in the recent past. Holocene aggradation terracing was dated using quartz optically stimulated luminescence methods and is mostly associated with times of fluctuating climate after 4 ka, with phases of valley filling dated at 2.6, 1.4, and 0.4 ka. The heights and volumes of the terraces show that sediment storage in the mountains is not a significant buffer to sediment transport, in contrast to the more monsoonal Indus system directly to the south. South of the Mazatag Ridge a significant eolian deposit accumulated ∼500 yr ago, but this has been deflated in more recent times. Comparison of the modern river data with those previously measured from Cenozoic foreland sedimentary rocks shows that no sediment similar to that of the modern Yarkand River is seen in the geologic record, which is inferred to be younger than 11 Ma, and probably much less. Uplift of the North Kunlun had started by ca. 17 Ma, somewhat after that of the Pamir and Songpan Garze of northwestern Tibet, dated to before 24 Ma. Sediment from the Kunlun reached the foreland basin between 14 and 11 Ma. North Kunlun exhumation accelerated before 3.7 Ma, likely linked to faster rock uplift

    Late Pliocene and Early Pleistocene variability of the REE and Nd isotope composition of Caribbean bottom water: A record of changes in sea level and terrestrial inputs during the final stages of Central American Seaway closure

    Get PDF
    The isotopic composition of neodymium dissolved in seawater consists of a distal, advected component that reflects water mass mixing and circulation, but near land can also contain a large local component originating from terrestrial sources such as aeolian or fluvial material. In order to use Nd isotopes to reconstruct paleocirculation, it is important to detect any local influences on the seawater signal recorded in deep sea sediments. Here we present rare earth element (REE) and Nd isotope (εNd) records from the deep Caribbean for two well‐studied time intervals in the Late Pliocene and Early Pleistocene. We measured trace element and REE compositions of weakly cleaned foraminifera to investigate if the Nd isotope signal from the same samples contained a local component. We find distinct changes in REE compositions across glaciations that are consistent with increases in the supply of local terrestrial material to the basin likely the results of glacially driven changes in sea level. Despite these larger terrestrial inputs, the Ce anomaly (Ce/Ce*) became more pronounced during glaciations indicating a better deep Caribbean ventilation. Short negative Nd isotope excursions occurred during three of the four studied glaciations, independently of any other proxy indicators for changes in ocean circulation suggesting that inputs from local terrigenous sources of Nd controlled the signal. We recommend that studies that aim to use εNd as a paleocirculation tracer routinely measure REE compositions of the authigenic phase to identify any possible terrestrial influence on the signal

    Rare earth element behaviour in seawater under the influence of organic matter cycling during a phytoplankton spring bloom – A mesocosm study

    Get PDF
    Rare earth elements (REEs) are used as powerful proxies for a variety of oceanic processes. The understanding of their biogeochemical behaviour in the marine environment is therefore essential. While the influence of OM-cycling on REE patterns in seawater is considered as insignificant, it has been shown that algae and bacteria provide good sorption surfaces for REEs and that components of the dissolved OM pool are able to complex REEs, thus potentially altering their behaviour. To investigate the impact of bio-associated processes on REEs in the bio-productive marine environment, we conducted an indoor mesocosm experiment that mimicked a phytoplankton spring bloom in the neritic coastal North Sea. The incubation period of 38 days covered two distinct phytoplankton bloom phases (diatoms followed by Phaeocystis sp.) and an interjacent bacterioplankton maximum. All dissolved REEs (dREEs) except samarium showed similar temporal concentration patterns, which were closely connected to the bloom succession. The concentration patterns were shaped by the ‘phytoplankton-shuttle’, which summarizes adsorption processes on phytoplankton-derived particulate OM (POM) and resulted in decreasing dREE concentrations alongside chlorophyll-a and POM maxima. The ‘heterotrophic-shuttle’ resulted in increasing dREE concentrations likely linked to heterotrophically mediated regeneration of POM and associated desorption processes. The effect of these processes on dREEs resulted in enhanced fractionation of light REEs (LREEs) relative to heavy REEs (HREEs) during adsorption processes and decreased fractionation as a result of desorption. At times of high dissolved organic carbon (DOC) concentrations, we observed a stabilization of especially dHREEs likely in organic complexes. To test the potential influence of DOC on dREEs, we used a PHREEQC model approach that revealed dREE complexation with components of the DOC pool and an increase in complexation with atomic mass of the REEs. That is, at high DOC concentrations OM-dREE complexation leads to an effective and preferential buffering of dHREE against adsorption. Our findings reveal that OM-cycling influences concentration patterns of dREEs via ad- and desorption processes as well as organic complexation with parts of the OM pool, suggesting these processes can have a significant impact on dREE concentrations in the natural marine environment under high OM conditions

    The drivers of biogeochemistry in beach ecosystems: A cross-shore transect from the dunes to the low water line

    Get PDF
    This study addresses key processes in high-energy beach systems using an interdisciplinary approach. We assess spatial variations in subsurface pore water residence times, salinity, organic matter (OM) availability, and redox conditions and their effects on nutrient cycles as well as on microbial community patterns and microphytobenthos growth. At the study site on Spiekeroog Island, southern North Sea, beach hydrology is characterized by the classical zonation with an upper saline plume (USP), a saltwater wedge, and a freshwater discharge tube in between. Sediment and pore water samples were taken along a cross-shore transect from the dunes to the low water line reaching sediment depths down to 5 m below sediment surface. Spatial variations in pore water residence time, salinity, and organic matter availability lead to steep redox and nutrient gradients. Vertical and horizontal differences in the microbial community indicate the influence of these gradients and salinity on the community structure. Modeled seawater flux through the USP and freshwater flux through the tube are on average 2.8 and 0.75 m3 per day and meter of shoreline, respectively. Furthermore, ridge sediments at the lower beach discharge seawater at rates of 0.5 and 1.0 m3 per day and meter of shoreline towards the runnel and seaside, respectively. Applying seawater and freshwater fluxes and representative nutrient concentrations for the discharge zones, nutrient fluxes to adjacent nearshore waters are 117 mmol NH4+, 55 mmol PO43 − and 575 mmol Si(OH)4 per day and meter of shoreline. We propose that this nutrient efflux triggers growth of microphytobenthos on sediment surfaces of the discharge zone. A first comparison of nutrient discharge rates of the beach site with a nearby sandy backbarrier tidal flat margin indicates that the beach system might be of less importance in supplying recycled nutrients to nearshore waters than the backbarrier tidal flat area
    corecore