
 

This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process which may 
lead to differences between this version and the Version of Record. Please cite this article as 
doi: 10.1029/2019PA003654 

 

©2019 American Geophysical Union. All rights reserved. 

 

Osborne Anne, Helen (Orcid ID: 0000-0003-3195-8855) 

Hathorne Ed (Orcid ID: 0000-0002-7813-2455) 

Groeneveld Jeroen (Orcid ID: 0000-0002-8382-8019) 

 

 

Late Pliocene and Early Pleistocene variability of the REE and Nd isotope composition of 

Caribbean bottom water: A record of changes in sea level and terrestrial inputs during the final 

stages of Central American Seaway closure 

Anne H. Osborne1*, Ed C. Hathorne1, Philipp Böning2, Jeroen Groeneveld3, Katharina 

Pahnke2, and Martin Frank1   

1GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany. 2Institute for Chemistry 

and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, 

Germany. 3Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 

Potsdam, Germany. 

*Corresponding author: Anne H. Osborne (aosborne@geomar.de)  

Key Points: 

 REEs can be used to identify local influences on the Nd isotope record in the deep 

Caribbean 

 Distinct terrestrial REE signal in the deep Caribbean associated with Late Pliocene 

and Pleistocene closure events of the Central American Seaway 

 Ce/Ce* records a ventilation signal despite input of terrestrial material. 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OceanRep

https://core.ac.uk/display/267811399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:aosborne@geomar.de)


 

©2019 American Geophysical Union. All rights reserved. 
 

Abstract 

The isotopic composition of neodymium dissolved in seawater consists of a distal, advected 

component that reflects water mass mixing and circulation, but near land can also contain a 

large local component originating from terrestrial sources such as aeolian or fluvial material. 

In order to use Nd isotopes to reconstruct paleocirculation, it is important to detect any local 

influences on the seawater signal recorded in deep sea sediments. Here we present rare earth 

element (REE) and Nd isotope (εNd) records from the deep Caribbean for two well-studied 

time intervals in the Late Pliocene and Early Pleistocene. We measured trace element and 

REE compositions of weakly cleaned foraminifera to investigate if the Nd isotope signal 

from the same samples contained a local component. We find distinct changes in REE 

compositions across glaciations that are consistent with increases in the supply of local 

terrestrial material to the basin likely the results of glacially driven changes in sea level. 

Despite these larger terrestrial inputs, the Ce anomaly (Ce/Ce*) became more pronounced 

during glaciations indicating a better deep Caribbean ventilation. Short negative Nd isotope 

excursions occurred during three of the four studied glaciations, independently of any other 

proxy indicators for changes in ocean circulation suggesting that inputs from local 

terrigenous sources of Nd controlled the signal. We recommend that studies that aim to use 

εNd as a paleocirculation tracer routinely measure REE compositions of the authigenic phase 

to identify any possible terrestrial influence on the signal. 

 

1. Introduction 

 

The 143Nd/144Nd ratio of dissolved Nd in seawater (usually reported as εNd, the parts per ten 

thousand deviation of the measured 143Nd/144Nd from that of the chondritic uniform reservoir 

(CHUR) of 0.512638, Jacobsen & Wasserburg, 1980) has been used extensively as a tracer 

for the advection of past water masses and their mixing (e.g. Burton et al., 1997; Gutjahr et 

al., 2008; Roberts et al., 2010; Scher & Martin, 2006). However, recent publications have 

called into question the robustness of this approach in light of evidence for a benthic 

sedimentary source of Nd to bottom waters (Abbott et al., 2015a,b; 2016; 2019) and 

modification of the seawater εNd signal not just near to continental boundaries (e.g. Grenier et 

al., 2013; Jeandel et al., 1998, 2007; Lacan & Jeandel, 2001, 2004a, 2004b, 2004c, 2005a, 

2005b; Wilson et al., 2012; Abbot 2019) but potentially throughout the ocean (Haley et al., 

2017; Abbott 2019; Abbott et al., 2019). Point sources of terrestrial material to the oceans, 

such as river estuaries, can also have a far-reaching impact on the εNd signal. For example, 

Bayon et al. (2004) found that pre-formed riverine oxides from the Congo River dominated 

the εNd signal in sediment coatings from a core 1000 km to the south of the river mouth, and 

Stewart et al. (2016) found that partial dissolution of detrital particulate material from the 

Amazon exerted a strong control on the εNd record from the Ceara Rise, approximately 800 

km from the river mouth.  

 

This raises the question if the authigenic εNd-signal in the sediment record can only be used as 

a water mass circulation tracer in the open ocean where possible contributions from terrestrial 

material do not modify the bottom water signal. Can other proxies be used in combination 

with εNd to assess whether or not it is a robust circulation tracer at a particular location? 

 

Weakly cleaned planktonic foraminifera (i.e. only cleaned to remove salts and detrital 

particles) have been demonstrated to reliably record the εNd signature of ambient bottom 

waters (Roberts et al., 2010; Piotrowski et al., 2012; Huang et al., 2014), although it is not 
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known whether the Nd is present predominantly in post depositional “coatings” or 

incorporated into the crystal lattice of the foraminifera during early diagenesis (Bayon et al., 

2004; Roberts et al., 2012; Tachikawa et al., 2014; Skinner et al., 2019; Abbott et al., 2019). 

Simply comparing core-top compositions with bottom water εNd cannot distinguish between a 

benthic source and a circulation source of Nd (Abbott et al., 2016; 2019). Trace element 

ratios, such as Al//Nd, are routinely used as a test for detrital contributions to the measured 

εNd signal (Hein et al., 1999; Gutjahr et al., 2007) but Nd added to pore waters, for example 

via dissolution of clays, would not necessarily result in a detrital-like composition of the 

leachable fraction (Abbott et al. 2019). Seawater-like Rare Earth Element (REE) patterns in 

the authigenic component have also been used as an indicator for the recovery of the seawater 

signal (e.g. Gutjahr et al., 2007; Blaser et al., 2016). Such patterns could, however, also be 

mimicked by the preferential uptake of the light REEs (LREEs, La to Sm) by authigenic clay 

minerals resulting in an enrichment in heavy REEs (HREEs, Ho to Lu) in the pore waters 

from which the REEs precipitate (Abbott et al., 2019). In conclusion, there is at present no 

simple test to reliably identify or quantify the origin of ‘authigenic’ Nd in deep sea sediments. 

 

Here we apply a multi-proxy approach to examine the controls on the εNd extracted from 

weakly cleaned planktonic foraminifera in Plio-Pleistocene sediments from the deep 

Caribbean basin (ODP Site 999). This site was chosen because it shows distinct changes in 

both bottom water and surface water properties affected by episodic closure of the Central 

American Seaway (CAS) during glacial-interglacial cycles in the Late Pliocene (MIS M2; 

~3.3 Ma) (De Schepper et al., 2013; Haug and Tiedemann, 1998) and the early Pleistocene 

(MIS 95-100; ~2.5 Ma) (Groeneveld et al., 2014). Site 999 is 400 km from the mouth of the 

Magdalena River, which discharges approximately 150 MT/yr of sediment into the Caribbean 

Sea, putting it in the top ten of world river sediment loads (Restrepo et al., 2006). As a result, 

climatically driven changes in the input of terrestrial-derived sediments may also be 

expected. We measured εNd in weakly cleaned foraminifera and use the REE compositions 

measured on the same samples to assess whether the εNd signal recorded a water mass 

circulation signal or whether it was predominantly controlled by local terrestrial sources. 

 

 

2. Materials and Methods 

2.1.  Sample site and oceanographic setting 

ODP Site 999 (12º45’N, 78º44’W) was drilled at 2828 m water depth on the Kogi Rise in the 

Columbian basin, approximately 400 km to the northwest of the Magdalena River mouth. 

Samples were taken from the upper 150 m of the core, which consists of mixed nannofossil, 

foraminifera and clay sediments and between 5 and 20 % dispersed volcanic ash (Sigurdsson 

et al., 1997). Nepheloid clays and other fine-grained terrigenous material from the Magdalena 

submarine fan have been deposited on the Kogi Rise but the elevated position of Site 999 

above the Colombian Plain has protected it from the influence of turbidites that dominate 

sedimentation to the southeast (Sigurdsson et al., 1997).  

 

The Anegada-Jungfern sill (~ 1800 mbsl) is the deepest connection between the Caribbean 

and the Atlantic and is the only pathway for overflow into the abyssal Columbian basin 

(Johns et al., 2002). The water filling the Caribbean below ~ 1800 m water depth is 

predominantly UNADW (Wüst, 1964) with small contributions from AAIW (10 %) and 

Mediterranean Outflow Water (MOW, 5%) (deMenocal et al., 1992; Kawase & Sarmiento, 

1986). Deep water remains in the Caribbean basin for an average of ~150 years (Joyce et al., 

1999) before exiting via the same sill (Sturges, 2005). Prolonged interaction with sediments 

in the basin, such as those from the Magdalena River (εNd = -8.3, Goldstein et al., 1984) or 
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from the Caribbean islands and Central American Volcanic Arc (Kirillova et al., 2019; 

GEOROC database) is likely responsible for the moderately radiogenic (i.e. higher 143Nd/144 

Nd ratio and more positive εNd value) isotope composition of dissolved Nd in the deep 

Caribbean (εNd signal between -8.3 and -9.2) (Osborne et al., 2014b), which is at least 4 εNd 

units more radiogenic than the signal of the inflowing Atlantic waters (-13 εNd, deMenocal et 

al., 1992; Kawase & Sarmiento, 1986; Piepgras & Wasserburg, 1987; Tachikawa et al., 

2004).  

 

 

2.2. Age models 

The original age model for ODP Site 999 (Haug & Tiedemann, 1998) was updated by Steph 

et al. (2006) and specifically tuned to LR04 (Lisiecki & Raymo, 2005) for MIS M2 by De 

Schepper et al. (2013) and for MIS 95-100 by Groeneveld et al. (2014). 

 

2.3. Sample preparation 

Samples of between 40 and 120 mg of mixed planktonic foraminifera were picked from the > 

400 µm size fraction for MIS 95-100 and from the > 355 µm size fraction for MIS M2 and 

cracked between two glass plates to open all chambers. Clays were removed by 

ultrasonication in repeated rinses of distilled water and methanol (Boyle, 1981). Any 

remaining detrital particles found under the microscope were removed with a single 

paintbrush bristle before the samples were dissolved in 0.03 M HNO3. We refer to the 

foraminifera prepared in this way as having been ‘weakly cleaned’ (cf. Skinner et al., 2019). 

Ten percent of the solution was retained for trace element and YREE-U measurements (REE 

plus yttrium and uranium). The neodymium in the remaining solution was separated and 

purified using standard ion chromatographic procedures (cation exchange columns, 0.8 ml 

AG50W-X12, mesh 200-400 µm, Barrat et al., 1996; 2 ml Ln Spec resin, mesh 50-100 µm, 

Le Fèvre and Pin, 2005). 

 

2.4. Nd isotope analyses 

The Nd isotope compositions were measured on a Neptune Plus at the Max Planck Research 

Group for Marine Isotope Geochemistry at ICBM, University Oldenburg. Measured 
143Nd/144Nd ratios were mass bias corrected using a 146Nd/144Nd ratio of 0.7219 and the 

exponential law and were normalized to the accepted JNdi-1 standard 143Nd/144Nd ratio of 

0.512115 (Tanaka et al., 2000). The external reproducibility for Nd isotope analyses was 

determined by replicate measurements of JNdi-1 and was ± 0.000015 for 143Nd/144Nd (± 0.30 

εNd; n = 38; 2σ). Repeated measurements of the La Jolla standard gave 0.511860 ± 0.000012 

(2SD, n=7), consistent with the reported value of 0.511858 (Lugmair et al., 1983). Internal 

precision was between 9 and 23 ppm (2SE). Total procedural blanks were ≤ 50 pg Nd, 

equivalent to ≤ 0.2 % of the total sample and thus considered negligible. Results and 

reproducibilities are reported in Supplementary Table 1. All εNd values were corrected for the 

ingrowth of 143Nd from 147Sm (0.02 εNd units for all samples) using an average Sm/Nd ratio of 

0.139 for weakly cleaned foraminifera (Osborne et al., 2017).  

 

2.5. Trace and Rare Earth Element analyses 

Concentrations of Ca, Fe, Mn, Al, La and Nd were measured on an Agilent 7500ce ICP-MS 

at GEOMAR. Standards with element/Ca ratios similar to foraminifera were prepared from 

single element solutions and were used to calculate the element/Ca ratios of the samples 

(Kraft et al., 2013; Rosenthal et al., 1999). External reproducibilities were monitored using 

repeat measurements of the ECRM standard (Greaves et al., 2008) and were 19.9% for 

Al/Ca, 2.1 % for Mn/Ca, 4.5 % for Fe/Ca, 25.7% for Al/Nd and 5.3 % for Fe/Mn. Results are 
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reported in Supplementary Table 2. All samples were then diluted to 50 ppm Ca and REE, Y 

and U concentrations (hereafter referred to as YREE-U) were determined using a seaFAST 

online pre-concentration system (Elemental Scientific Inc., Nebraska, USA) attached to the 

same Agilent 7500ce ICP-MS. Measurement procedures were modified from Hathorne et al. 

(2012) by inclusion of Y and U and of a time resolved analysis of the elution peak, which 

improved analytical precision (Osborne et al., 2015; 2017). The La/Ca ratio (µmol/mol) 

measured by standard introduction was used to normalize YREE-U concentrations. External 

reproducibilities for both were monitored using repeat measurements of the ECRM standard 

(Greaves et al., 2008) and were between 5 and 9 % for YREE-U.  Results and procedural 

blanks are reported in Supplementary Table 3. 

 

 

3. Results 

 

3.1. εNd  

The deep Caribbean εNd(t) signal extracted from the weakly cleaned planktonic foraminifera 

shells for the Late Pliocene time interval investigated varied by 2 εNd units between -5.9 for 

the oldest sample (3.344 Ma) and -7.9 at the beginning of the MIS M2 glaciation (3.311 Ma) 

(Figure 2a). Radiogenic εNd peaks reaching values between -6.0 and -6.5 were recorded 

during both interglacial MG1 and glacial M2. The εNd signal remained at ~ -7 from 3.297 Ma 

until the end of our record at 3.260 Ma. 

 

The early Pleistocene εNd signatures varied between -6.5 and -8 (Figure 3a) and thus were 

overall only slightly less radiogenic than the Late Pliocene record (Figure 2a). Again, there 

were radiogenic εNd peaks during both glacials and interglacials. A sudden drop to an εNd 

signal of ~ -8.0 was recorded in the middle of the MIS 98 glaciation (2.487 Ma) and at the 

beginning of the MIS 96 glaciation (2.453 Ma). 

 

3.2. Trace and Rare Earth Element composition 

 

Concentrations of the redox sensitive elements U, Mn and Fe were determined for the same 

weakly cleaned foraminifera samples (Supplementary Tables 2 and 3). Uranium 

concentrations decreased from 0.4 ppm at 3.344 Ma to between 0.1 and 0.2 ppm after 3.322 

Ma, with a peak of 0.6 ppm at 3.323 Ma (Figure 2b). Mn concentrations fluctuated between 

600 and 900 pm throughout the Late Pliocene record (Figure 2c). Fe concentrations were 

between 150 and 400 ppm for the majority of the Late Pliocene record, with higher 

concentrations (> 500 ppm) prior to 3.336 Ma and a peak of ~ 1000 ppm at 3.323 Ma (Figure 

2d), concurrent with the peak in U. Concentrations of Nd were highest during the first half of 

the M2 glaciation (between 1.7 and 2.6 ppm from 3.311 and 3.288 Ma) (Figure 2e), a trend 

observed for all REEs (Figure 4a). 

 

In the early Pleistocene record, U concentrations were highest during interglacials 95 and 97 

(> 0.4 ppm at 2.463 Ma) and lowest during glaciations 98 and 100 (< 0.1 ppm) (Figure 3b). 

Mn concentrations fluctuated between 300 and 900 ppm (Figure 3c). Fe concentrations were 

mostly between 100 and 500 ppm, with a small peak of 760 ppm at 2.499 Ma and a larger 

peak of 1700 ppm at 2.463 Ma (Figure 3d). Nd concentrations were highest at the start of 

glaciations (reaching a maximum of 3.0 ppm at 2.529 Ma), decreasing during the glaciations 

to minima during the interglacials (approaching minimum values near 1 ppm) (Figure 3e). 

The concentrations of all REEs were generally higher during the glaciations (Figure 4b). 
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4. Discussion 

 

4.1. Evidence for an authigenic, seawater-derived εNd signal  

 

The Al/Nd ratio is often applied as an indicator of detrital contamination as it is generally 

significantly lower in ferromanganese coatings than in detrital sediments (Hein et al., 1999; 

Gutjahr et al., 2007). The range of Al/Nd elemental ratios determined for the weakly cleaned 

foraminifera is between 2 and 37 for both time slices, with a mean of 8.4 for MIS M2 and 

10.1 for MIS 95-100, which is comparable to the first 3-hour leach in Gutjahr et al. (2007). 

The overall small changes in Al/Nd do not coincide with any of the prominent changes in the 

εNd and REE records (Figures 2f and 3f). Based on these observations we argue that the εNd 

signature extracted from the weakly cleaned foraminifera was not contaminated by detrital 

particles. However, as Abbott et al. (2019) pointed out, the dissolution and re-precipitation of 

authigenic clays would not necessarily result in a high Al/Nd ratio, and neither would a 

preformed fluvial signal transported from local rivers [Bayon et al., 2004; Stewart et al., 

2016]. Therefore Al/Nd ratios alone cannot distinguish between a circulation or local source 

of Nd in the records. 

 

Looking now at the εNd signal obtained from the weakly cleaned foraminifera, both records 

have a similar range in compositions, with minima at -8.0 εNd and maxima between -6.5 and -

6.0 εNd (Figures 2a and 3a). The minima are similar to the composition of core top 

foraminifera from close to Site 999 (-8.1 to -9.3 εNd, Osborne et al., 2014a) and to modern 

deep waters in the Caribbean (εNd signal between -8.3 and -9.2, Osborne et al., 2014b). The 

minima are also similar to the composition of Magdalena River sediments (εNd = -8.3, 

Goldstein et al., 1984). The remainder of the Late Pliocene and Early Pleistocene records 

require a different composition of incoming Atlantic waters compared to the modern situation 

and/or a change in the local supply of Nd to the basin.  

 

The Pliocene composition of NADW, as recorded by a NW Atlantic ferromanganese crust at 

1850 m water depth, was ~ -11.35 εNd at 3.33 Ma, decreasing slightly to ~ -11.55 εNd at 2.5 

Ma (Burton et al., 1999). The composition of AAIW was -6 ± 0.5 εNd during the Late 

Pliocene and Early Pleistocene (Karas et al., 2019) and MOW εNd was between -11 and -10 

(Khelifi et al., 2014). If the contribution of radiogenic Nd from local sources was similar to 

today (+ 4 εNd Osborne et al., 2014b) then an increase in the proportion of AAIW in the deep 

Caribbean of up to 25 ± 10 % compared to 10 % today (deMenocal et al., 1992; Kawase & 

Sarmiento, 1986) could explain the most radiogenic signals of the Site 999 record. However, 

a constant contribution of + 4  εNd cannot explain compositions less radiogenic than ~ - 7.35 

εNd, even if 100 % NADW filled the basin at those times. Therefore, there must have been a 

change in the contribution of Nd from local sources which dominated the observed signatures 

but was likely accompanied by a change in water mass mixing. 

 

The other possible factors contributing to the εNd signal were a change in the composition of 

Magdalena river sediments transported to the site or an increase in the deposition of volcanic 

ash. 

The Magdalena River Basin today covers more than 250,000 km2, and is a tectonically active 

area with steep hill slopes (Restrepo et al., 2006). The river and its tributaries drain the 

Western, Central and Eastern Cordillera, which together comprise the northernmost part of 

the Andean mountain chain (Restrepo et al., 2006). Sediments from the continental and 

metamorphic basement in the Eastern and Central Cordillera have very unradiogenic 

compositions, (εNd ≤ -13) whereas those with a magmatic arc source in the Western Cordillera 
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are more radiogenic (-12 to -9 εNd) (Nie et al., 2012). Jurassic plutonic and volcanic units in 

the Colombian Andes are generally more radiogenic than the basement complexes, ranging 

from -10.3 to +4.0 εNd (James and Murcia., 1984; Quandt et al., 2018). Therefore, a 

preformed signal transported by sediments from the Magdalena river could explain the full 

range of εNd values in our Plio-Pleistocene records. Sigurdsson et al. (1997) reported that 

material from the upper 150 m of ODP 999 contained between 5 and 20 % of dispersed 

volcanic ash. There is no available record of ash content that has the same temporal 

resolution as the records presented here but it is conceivable that variations did occur and 

contributed to the εNd signal recorded by the weakly cleaned foraminifera. 

 

 

4.2. Glacial-interglacial changes in REE compositions 

 

The REE results show clear glacial-interglacial differences, with higher concentrations during 

glaciations of both studied time intervals (Figures 2e, 3e, 4a and 4b). Glacial samples tend to 

have a more pronounced Middle REE enrichment and a greater reduction in Ce concentration 

compared to La and Pr, whereas interglacial samples are generally more enriched in the 

Heavy REE than in the Light REEs (Figure 4).  

 

The first question to ask is whether these shifts in REE compositions were a result of 

changing redox conditions in the sediment column. If sub-oxic or anoxic conditions prevail 

during early diagenesis this can strongly alter the REE composition of the porewaters (Abbott 

et al., 2015; Elderfield & Sholkovitz, 1987; Haley et al., 2004; Holser, 1997; Sholkovitz et al., 

1992) and can overprint the primary core-top REE signal (Du et al., 2016; Skinner et al., 

2019). Uranium is soluble under oxic conditions and under anoxic conditions precipitates 

onto sedimentary particles and foraminifera (Henderson & O’Nions, 1995; Lea et al., 2005; 

Boiteau et al., 2012). Uranium concentrations are low in the down core foraminifera samples 

(< 0.6 ppm), supporting oxic conditions during deposition and burial, but Fe concentrations 

in our records (≥ 150 ppm, Figures 2b and 3b) are significantly higher than concentrations of 

sedimentary foraminifera reported by Roberts et al. (2012) (≤ 50 ppm), and manganese 

concentrations (360 – 900 ppm, Figures 2c and 3c) are comparable with the glacial sections 

of the Roberts et al. (2012) record, which was inferred to have been deposited under sub-oxic 

conditions. However, there are multiple peaks in Mn concentrations during both time 

intervals which do not follow glacial-interglacial patterns and do not correlate with the peaks 

in Fe, which argues against pervasive re-dissolution and re-precipitation of oxides that would 

be expected for systematic changes between reducing and oxidizing conditions (Froelich et 

al., 1979) (Figures 2 and 3). Furthermore, neither Mn nor Fe concentrations are tightly 

coupled with Nd concentrations in our records, despite the strong affinity of Nd (and the 

other REEs) to ferromanganese oxides (Koschinsky & Hein, 2003). This argues against 

dissolution and re-precipitation of Fe-Mn-oxides under changing redox conditions being 

responsible for the observed shifts in REE concentrations (Roberts et al., 2012) (Figures 2 

and 3).  

 

The ratio of heavy to light REEs (HREE/LREE, defined as [YbN +LuN]/[PrN + NdN]), the 

Middle REE enrichment (MREE/MREE*, defined as 2[TbN + DyN]/[PrN + NdN + YbN + LuN], 

and the Ce/Ce* anomaly (3*CeN/(2*LaN+NdN) (Elderfield & Greaves, 1982), all show 

distinct and systematic glacial-interglacial changes that are independent of the proxies for 

redox conditions (In all cases N is normalisation to Post-Archaean Australian Shale (PAAS, 

Taylor & McLennan, 1985) (Figures 2g-i and 3g-i). 
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The differences between concentrations of dissolved REEs are largely dependent on different 

mineral-seawater partitioning coefficients (Byrne & Kim, 1990; Schijf et al., 2015). LREEs 

are more readily scavenged than HREEs (Byrne & Kim, 1990; Schijf et al. 2015), leading to a 

general increase of the HREE/LREE ratio in a water mass the longer it is isolated from 

continental REE inputs (cf. Osborne et al., 2017). An enrichment of the MREEs (Eu to Dy) 

relative to the Heavy and Light REEs in seawater indicates that a water mass recently 

received input from terrestrial (i.e. dust or river) REE sources (e.g. Freslon et al., 2014; 

Osborne et al., 2017; Pourmand et al., 2014; Sholkovitz, 1993). 

 

The simplest explanation for the increase in REE concentrations, as well as the enrichment in 

the MREEs and HREE/LREE ratios trending towards 1, is an increase in inputs from 

terrestrial REE sources during glacial periods (e.g. Freslon et al., 2014; Osborne et al., 2017; 

Pourmand et al., 2014; Sholkovitz, 1993). However, increased terrestrial input should also 

shift the Ce/Ce* anomaly towards 1 (German & Elderfield, 1990; Hathorne et al., 2015) but 

instead the opposite trend is observed. Cerium differs from the other REEs in that Ce(III) 

oxidises to insoluble Ce(IV) and is preferentially removed from oxygenated seawater in 

comparison to the other REEs and is re-released under reducing conditions (Elderfield & 

Sholkovitz, 1987). There are indications that lower oxygen concentrations in bottom waters 

correspond to a greater “Ce-enrichment” in sedimentary foraminifera compared to the 

overlying seawater (Skinner et al., 2019). Taking these observations into account, we suggest 

that the enhancement of the Ce/Ce* anomaly during the glaciations was independent of 

increased terrestrial input and was instead the result of better-oxygenated bottom- and pore-

waters. This conclusion is supported by concomitant increases in the percentage of carbonate 

sand that have been interpreted as maxima of deep Caribbean ventilation (Haug & 

Tiedemann, 1998).  

 

 

4.3. Multi-proxy assessment of the origin of the εNd changes 

 

We now combine the REE results with the εNd records and compare these to other proxies 

from Site 999 in order to examine the origin of the εNd signal. 

 

There is a striking similarity between the εNd and the HREE/LREE records up until the onset 

of MIS M2 (Figure 5b and c). Both show a maximum during MIS MG1 followed by a 

decrease at the boundary to MIS M2. The Pliocene MREE/MREE* record (Figure 5d) is 

generally anti-correlated with the HREE/LREE and εNd records and we therefore interpret the 

more radiogenic εNd values during MIS MG1 as a circulation signal, implying a greater 

proportion of AAIW in the waters that enter the Caribbean and sink to form deep water. Low 

carbonate sand percentages (Haug & Tiedemann, 1998) and a weak Ce/Ce* anomaly during 

this interval support the presence of poorly ventilated waters in the Caribbean basin (Figures 

2f and g).  

 

Both the HREE/LREE ratio and the εNd signature decrease at the boundary to MIS M2. As 

discussed above, elevated inputs of terrestrial REEs close to the sample site would push the 

HREE/LREE towards 1.  As the εNd minimum is similar in composition to modern 

Magdalena River Sediments (Figure 5b) (Goldstein et al. 1984), one viable interpretation is 

that there was an increase in sediment discharge from that river at the onset of MIS M2. If 

this was the case, then we would also expect to see an increase in the MREE/MREE* 

enrichment that is typical of terrestrial REE sources (e.g. Freslon et al., 2014; Osborne et al., 

2017; Pourmand et al., 2014; Sholkovitz, 1993). Instead we see a minimum in 
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MREE/MREE* at the same time as the minimum in εNd and HREE/LREE (Figure 5). The 

carbonate sand percentage is low at the MIS M2 boundary, suggesting the continued presence 

of poorly ventilated waters (Haug & Tiedemann, 1998), whereas the Ce/Ce* anomaly is 

stronger, which would suggest an increase in ventilation at the MIS M2 boundary. Based on 

the available data, the cause of the εNd minimum at 3.311 Ma is therefore unclear at present.  

 

During the most intense period of the MIS M2 glaciation (3.305-3.285 Ma) HREE/LREE 

ratios were lower and the MREE/MREE* enrichment was greater, both of which point to an 

increase in local terrestrial input. The carbonate sand percentage (Haug & Tiedemann, 1998) 

and Ce/Ce* anomaly records are also consistent with each other and indicate that the deep 

Caribbean was well-ventilated, an interpretation supported by higher benthic δ13C during 

MIS M2 (Haug & Tiedemann, 1998; De Schepper et al., 2013). The εNd signal during MIS 

M2 increased to ~ -6.2 at 3.302 Ma before decreasing to ~ -7 after 3.294 Ma. These changes 

were independent of fluctuations in the REE composition. Based on the Pliocene record of 

NADW composition in the NW Atlantic (~ -11.35 εNd at 3.33 Ma, Burton et al., 1999), an 

increase in well-ventilated, northerly sourced waters would contribute unradiogenic Nd to the 

Caribbean basin, i.e. opposite to the observed trend. Therefore, we conclude that increased 

local inputs of radiogenic terrestrial material to Site 999 contributed to the signal at Site 999 

during the glaciation.  

 

Sea-level reconstructions vary widely for MIS M2, from >-10 m (Naish and Wilson, 2009) to 

-65 m ± 15-25 m (Dwyer and Chandler, 2009) (Figure 5g). An independent indicator for a 

sea-level low stand in the Caribbean during M2 comes from lower abundances of 

dinoflagellates, thought to be the result of a glaciation-induced closure of the Central 

American Seaway (Figure 5a, De Schepper et al., 2013). Lower sea level would have 

exposed shallow shelf areas and promoted river incision, which would have increased the 

terrestrial input to the Caribbean. A further consideration is a shift in the precipitation regime 

associated with the glaciation. To our knowledge, there are no proxy records of precipitation 

in the Caribbean region for M2. Simulations of M2 conditions with a coupled atmosphere-

ocean climate model show a southward shift of the ITCZ and a decrease in mean annual 

precipitation in the tropics (Dolan et al., 2015), which would have reduced runoff via the 

Magdalena and other local rivers. Sediment records from the Cariaco Basin and the eastern 

equatorial Pacific also suggest drier conditions during the Younger Dryas and during glacials 

over the past 500 thousand years respectively (Haug et al., 2001; Rincon-Martinez et al. 

2010). More arid conditions during MIS M2 may have instead increased the supply of dust to 

the region. As both dust and river REEs show an MREE enrichment (Freslon et al., 2014; 

Pourmand et al., 2014; Sholkovitz, 1993) it is not possible at present to distinguish between 

these two potential source contributions.  

 

The Pleistocene εNd record shows a smaller amplitude than the Pliocene record, with the 

maximum εNd values reduced from -6.0 to -6.5. Similar to the Pliocene record, the two εNd 

minima in the Pleistocene record are also ~ -8.0 and occur in the middle of MIS 98 (2.487 

Ma) and at the boundary between MIS 97 and 96 (2.453 Ma), at the same time as low 

HREE/LREE and high MREE/MREE* ratios. In this instance, all three proxies are consistent 

with increased contributions from a terrestrial REE source with a Magdalena River-like 

composition. The HREE/LREE and MREE/MREE* in the Pleistocene record closely track 

one another and co-vary with the εNd signal during MIS 98 and 97 but not during the rest of 

the record. The HREE/LREE and MREE/MREE* ratios do, however, show a striking 

similarity to the mixed layer temperature difference measured between the Eastern Equatorial 

Pacific ODP Site 1241 and Site 999 (Groeneveld et al., 2014). The mixed layer temperature 
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difference has been interpreted as a record of periodic Central American Seaway closure 

related to ice-volume driven drops in sea-level of up to 60 m (Groeneveld et al., 2014; 

Bintanja & van de Wal, 2008). As for the Pliocene record, lower sea-level during the Early 

Pleistocene corresponded to a more terrestrial-like signal in the HREE/LREE and 

MREE/MREE* ratios. 

 

The Pleistocene Ce/Ce* anomalies were more pronounced during the glacials and weakened 

during the interglacials, which does not correlate with any of the other REE parameters 

discussed here but broadly corresponds to changes in the carbonate sand percentage (Haug & 

Tiedemann, 1998). Together the data suggest, as for MIS M2, that the deep Caribbean was 

better ventilated during the glacials. Increases in benthic δ13C during MIS 100 and 96 also 

support this interpretation (Haug & Tiedemann, 1998).  

 

Apart from the two minima, the εNd signal recorded at Site 999 was -7.0 ± 0.5 and does not 

show changes that are consistent with the proxies for terrestrial input or for ventilation and 

circulation. If the εNd signal were a circulation signal, this would require a mixture of 80 ± 10 

% AAIW (-6 ± 0.5 εNd, Karas et al., 2019) and 20 ± 10 % NADW (between ~- 11.35 and -

11.55 εNd, Burton et al., 1999). As there is no supporting evidence for such a dramatic 

increase in the proportion of AAIW from either benthic δ13C or the carbonate sand 

percentage (Haug & Tiedemann, 1998), we conclude that local inputs of radiogenic terrestrial 

material dominated the εNd signal at Site 999 during the Early Pleistocene. 

 

 

5. Conclusions 

New high-resolution REE and εNd records for deep Caribbean ODP Site 999 for the Late 

Pliocene glacial MIS M2 and the Early Pleistocene glacial-interglacial cycles MIS 95-100 are 

used to examine whether deep water mass mixing or local terrestrial inputs controlled the Nd 

isotope record of the deep Caribbean. 

 

The REE compositions recorded by weakly cleaned planktonic foraminifera changed 

systematically between glacials and interglacials during both investigated time intervals. 

We find that there was a distinct terrestrial REE signal in the deep Caribbean that was 

associated with Central American Seaway closure events during the Late Pliocene (MIS M2) 

and the Early Pleistocene (MIS 100, 98 and 96) linked to sea level low stands and thus 

enhanced inputs from the shelves. These terrestrial inputs most likely originated from the 

Magdalena River, albeit with a somewhat more radiogenic composition than today (Goldstein 

et al. 1984). Increased volcanic activity may also have contributed to the REE budget 

(Sigurdsson et al., 1997).  

 

Trends in the Ce/Ce* anomaly appear to be independent from changes in terrestrial inputs 

and instead indicate that the deep Caribbean was better ventilated during glacial MIS M2 and 

the later parts of MIS 96, 98 and 100, supporting earlier evidence based on carbonate sand 

content (Haug & Tiedemann, 1998).  

 

Based on the REE compositions and on comparison with other ocean circulation proxies, 

such as carbonate sand content and benthic δ13C (Haug & Tiedemann, 1998; De Schepper et 

al., 2013), we find that the εNd composition at Site 999 was strongly influenced by local 

inputs during both time intervals studied. We recommend that studies that aim to use εNd as a 

paleocirculation tracer close to potential inputs from land routinely measure REE 

compositions to identify any possible terrestrial influence on the signal. 
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Figure 1. Map showing the locations of cores discussed in the text and εNd compositions of 
rock samples from the Caribbean region (small coloured circles), as retrieved from the 
GEOROC database (http://georoc.mpch-mainz.gwdg.de/georoc/). Also shown is the εNd 

composition calculated for the deepest waters entering the Caribbean basin via the 
Anegada-Jungfern sill at ~ 1800 m (~ -13 εNd, deMenocal et al., 1992; Kawase & Sarmiento, 
1986; Piepgras & Wasserburg, 1987; Tachikawa et al., 2004), the εNd composition of AAIW 
transported from the South Atlantic (-10.6 to -11 εNd, Osborne et al., 2014b) and the εNd 

composition of Magdalena River sediments (εNd = -8.3, Goldstein et al., 1984). The coloured 
circle around Site 999 shows the composition of present day Caribbean seawater at 3000 m 
depth from a station close to ODP Site 999 (Osborne et al., 2014b). Map produced using 
Ocean Data View (Schlitzer, 2018). 
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Figure 2. High-resolution data from weakly cleaned foraminifera for MIS M2 at ODP Site 

999: (a) εNd; (b) U (ppm); (c) Mn (ppm); (d) Fe (ppm); (e) Nd (ppm); (f) Al/Nd (ppm/ppm); (g) 
Fe/Mn (ppm/ppm). The dark grey vertical bars indicate the extent of the glacials MIS MG2 
and M2, based on benthic δ18O (Lisiecki & Raymo, 2005) and the lighter grey vertical bar 
indicates the extent of the most intense glaciation during M2, from 3.305 -3.285 Ma (De 
Schepper et al., 2013). 
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Figure 3. High-resolution data from weakly cleaned foraminifera for MIS 95-100 at ODP Site 
999: (a) εNd; (b) U (ppm); (c) Mn (ppm); (d) Fe (ppm); (e) Nd (ppm); (f) Al/Nd (ppm/ppm); (g) 
Fe/Mn (ppm/ppm). The light grey vertical bars indicate the extent of the glacials MIS 96, 98 
and 100, based on benthic δ18O (Lisiecki & Raymo, 2005). 
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Figure 4 YREE concentrations measured in weakly cleaned foraminifera normalized to Post 
Archean Australian Shale values (PAAS, Taylor & McLennan, 1985) for (a) M2 and (b) MIS 

95-100. The PAAS-normalized YREE values were further normalized to [Pr] in figures (c) 
and (d) to better compare the shapes of the YREE patterns. Orange symbols in all plots 
indicate interglacial samples. Blue symbols in plots (a) and (c) indicate samples from the 
most intense glaciation during M2, from 3.305 -3.285 Ma (De Schepper et al., 2013), 

whereas grey symbols in plots (a) and (c) indicate other glacial samples. Blue symbols in 
plots (b) and (d) indicate glacial samples. 
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Figure 5. High-resolution data for MIS M2 from ODP Site 999: (a) benthic foraminifer δ18O 
(Haug & Tiedemann, 1998; De Schepper et al., 2013), (b) εNd, (c) HREE/LREE, (d) 

MREE/MREE*, and (e) Ce/Ce* in weakly cleaned foraminifera; (f) carbonate sand 
percentage (Haug & Tiedemann, 1998; De Schepper et al., 2013), (g) mean of sea level 
estimates from Naish et al. (2009) and Miller et al. (2005), scaled to the amplitudes of the 
Lisiecki & Raymo, (2005) benthic foraminifer δ18O record , as calculated by Rohling et al. 
(2014), and (h) benthic foraminifer δ13C (Haug & Tiedemann, 1998). Also shown is a pink 
horizontal bar indicating the extent of a sea-level driven Central American Seaway closure 
event, based on dinoflagellate assemblages (De Schepper et al., 2013). The horizontal red 
bar in plot (b) shows the composition of Magdalena River sediments (Goldstein et al., 1984).  

The vertical red bar in plot (b) shows the composition of AAIW during this time interval 
(Karas et al., 2019). The dark grey vertical bars indicate the duration of the MIS MG2 and 
M2 glacials, based on benthic foraminiferal δ18O (Lisiecki & Raymo, 2005) and the lighter 

grey vertical bar indicates the extent of the most intense glaciation during MIS M2, from 
3.305 -3.285 Ma (De Schepper et al., 2013).  
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Figure 6. High-resolution data for MIS 95-100 from ODP Site 999: (a) benthic foraminifer 
δ18O (Haug & Tiedemann, 1998), (b) εNd, (c) HREE/LREE, (d) MREE/MREE*, and (e) 
Ce/Ce* in weakly cleaned foraminifera; (f) carbonate sand percentage (Haug & Tiedemann, 
1998), (g) Caribbean-Pacific difference in mixed layer temperature (Groeneveld et al., 2014), 
(h) mean of sea level estimates from Naish et al. (2009) and Miller et al. (2005), scaled to 
the amplitudes of the Lisiecki & Raymo, (2005) benthic foraminifer δ18O record , as 
calculated by Rohling et al. (2014), (i) benthic foraminifer δ13C (Haug & Tiedemann). The 
horizontal red bar in plot (b) shows the composition of Magdalena River sediments 
(Goldstein et al., 1984).  The vertical red bar in plot (b) shows the composition of AAIW 
during this time interval (Karas et al., 2019). The blue arrow in plot (g) indicates increasing 
differences in Caribbean-Pacific mixed layer temperature, interpreted as resulting from 
episodic closure of the CAS (Groeneveld et al., 2014). The light grey vertical bars indicate 
the duration of the glacials MIS 96, 98 and 100, based on benthic foraminiferal δ18O (Lisiecki 
& Raymo, 2005). 

 


