46 research outputs found

    Radiometric Calibration of the AWiFS Using Vicarious Calibration Techniques

    Get PDF
    A radiometric calibration assessment of the AWiFS (Advanced Wide Field Sensor) on the Indian Remote Sensing Resourcesat-1 satellite was performed by the NASA Applied Research & Technology Project Office (formerly the Applied Sciences Directorate) at the John C. Stennis Space Center. A reflectance-based vicarious calibration approach, requiring ground-based measurements coincident with satellite acquisitions and radiative transfer calculations, was used to estimate at-sensor radiance. The AWiFS is a 4-band, multispectral, moderate-resolution (60 m) imaging sensor that operates in the visible through short-wave infrared spectrum and is currently being considered as a Landsat-like alternative. Several study sites near the Stennis Space Center that attempted to span the dynamic range of the sensor were employed. Satellite at-sensor radiance values were compared to those estimated to determine the sensor's radiometric accuracy. The results of this evaluation provide the user community with an independent assessment of the radiometric accuracy of AWiFS image products, which are commercially available through GeoEye. These results are an extension of an independent assessment made by the University of Arizona Remote Sensing Group, the South Dakota State University Satellite Calibration Group & Image Processing Lab, and the NASA Applied Sciences Directorate at the John C. Stennis Space Center the previous year

    Instrument for Measuring Temperature of Water

    Get PDF
    A pseudo-Brewster-angle infrared radiometer has been proposed for use in noncontact measurement of the surface temperature of a large body of water (e.g., a lake or ocean). This radiometer could be situated on a waterborne, airborne, or spaceborne platform. The design of the pseudo-Brewster-angle radiometer would exploit the spectral-emissivity and polarization characteristics of water to minimize errors attributable to the emissivity of water and to the reflection of downwelling (e.g., Solar and cloud-reflected) infrared radiation. The relevant emissivity and polarization characteristics are the following: . The Brewster angle is the angle at which light polarized parallel to the plane of incidence on a purely dielectric material is not reflected. The pseudo-Brewster angle, defined for a lossy dielectric (somewhat electrically conductive) material, is the angle for which the reflectivity for parallel-polarized light is minimized. For pure water, the reflectivity for parallel-polarized light is only 2.2 x 10(exp -4) at its pseudo- Brewster angle of 51deg. The reflectivity remains near zero, several degrees off from the 51deg optimum, allowing this angle of incidence requirement to be easily achieved. . The wavelength range of interest for measuring water temperatures is 8 to 12 microns. The emissivity of water for parallel- polarized light at the pseudo-Brewster angle is greater than 0.999 in this wavelength range. The radiometer would be sensitive in the wavelength range of 8 to 12 microns, would be equipped with a polarizer to discriminate against infrared light polarized perpendicular to the plane of incidence, and would be aimed toward a body of water at the pseudo- Brewster angle (see figure). Because the infrared radiation entering the radiometer would be polarized parallel to the plane of incidence and because very little downwelling parallel-polarized radiation would be reflected into the radiometer on account of the pseudo-Brewster arrangement, the radiation received by the radiometer would consist almost entirely of thermal emission from the surface of the water. Because the emissivity of the water would be very close to 1, the water could be regarded as a close approximation of a blackbody for the purpose of computing its surface temperature from the radiometer measurements by use of the Planck radiation law

    Simplified Vicarious Radiometric Calibration

    Get PDF
    A measurement-based radiance estimation approach for vicarious radiometric calibration of spaceborne multispectral remote sensing systems has been developed. This simplified process eliminates the use of radiative transfer codes and reduces the number of atmospheric assumptions required to perform sensor calibrations. Like prior approaches, the simplified method involves the collection of ground truth data coincident with the overpass of the remote sensing system being calibrated, but this approach differs from the prior techniques in both the nature of the data collected and the manner in which the data are processed. In traditional vicarious radiometric calibration, ground truth data are gathered using ground-viewing spectroradiometers and one or more sun photometer( s), among other instruments, located at a ground target area. The measured data from the ground-based instruments are used in radiative transfer models to estimate the top-of-atmosphere (TOA) target radiances at the time of satellite overpass. These TOA radiances are compared with the satellite sensor readings to radiometrically calibrate the sensor. Traditional vicarious radiometric calibration methods require that an atmospheric model be defined such that the ground-based observations of solar transmission and diffuse-to-global ratios are in close agreement with the radiative transfer code estimation of these parameters. This process is labor-intensive and complex, and can be prone to errors. The errors can be compounded because of approximations in the model and inaccurate assumptions about the radiative coupling between the atmosphere and the terrain. The errors can increase the uncertainty of the TOA radiance estimates used to perform the radiometric calibration. In comparison, the simplified approach does not use atmospheric radiative transfer models and involves fewer assumptions concerning the radiative transfer properties of the atmosphere. This new technique uses two neighboring uniform ground target areas having different reflectance values. The target areas can be natural or artificial and must be large enough to minimize adjacent-pixel contamination effects. The radiative coupling between the atmosphere and the terrain needs to be approximately the same for the two targets. This condition can be met for relatively uniform backgrounds when the distance between the targets is within a few hundred meters. For each target area, the radiance leaving the ground in the direction of the satellite is measured with a radiometrically calibrated spectroradiometer. Using the radiance measurements from the two targets, atmospheric adjacency and atmospheric scattering effects can be subtracted, thereby eliminating many assumptions about the atmosphere and the radiative interaction between the atmosphere and the terrain. In addition, the radiometrically calibrated spectroradiometer can be used with a known reflectance target to estimate atmospheric transmission and diffuse- to-global ratios without the need for ancillary sun photometers. Several comparisons between the simplified method and traditional techniques were found to agree within a few percent. Hence, the simplified method reduces the overall complexity of performing vicarious calibrations and can serve as a method for validating traditional radiative transfer model

    Initial Radiometric Calibration of the AWiFS using Vicarious Calibration Techniques

    Get PDF
    NASA SSC maintains four ASD FieldSpec FR spectroradiometers: 1) Laboratory transfer radiometers; 2) Ground surface reflectance for V&V field collection activities. Radiometric Calibration consists of a NIST-calibrated integrating sphere which serves as a source with known spectral radiance. Spectral Calibration consists of a laser and pen lamp illumination of integrating sphere. Environmental Testing includes temperature stability tests performed in environmental chamber

    An LED Approach for Measuring the Photocatalytic Breakdown of Crystal Violet Dye

    Get PDF
    A simple technique to assess the reactivity of photocatalytic coatings sprayed onto transmissive glass surfaces was developed. This new method uses ultraviolet (UV) gallium nitride (GaN) light-emitting diodes (LEDs) to drive a photocatalytic reaction (the photocatalytic breakdown of a UV-resistant dye applied to a surface coated with the semiconductor titanium dioxide); and then a combination of a stabilized white light LED and a spectrometer to track the dye degradation as a function of time. Simple, standardized evaluation techniques that assess photocatalytic materials over a variety of environmental conditions, including illumination level, are not generally available and are greatly needed prior to in situ application of photocatalytic technologies. To date, much research pertaining to this aspect of photocatalysis has been limited and has focused primarily on laboratory experiments using mercury lamps. Mercury lamp illumination levels are difficult to control over large ranges and are temporally modulated by line power, limiting their use in helping to understand and predict how photocatalytic materials will behave in natural environmental settings and conditions. The methodology described here, using steady-state LEDs and time series spectroradiometric techniques, is a novel approach to explore the effect of UV light on the photocatalytic degradation of a UV resistant dye (crystal violet). GaN UV LED arrays, centered around 365 nm with an adjustable DC power supply, are used to create a small, spatially uniform light field where the steady state light level can be varied over three to four orders of magnitude. For this study, a set of glass microscope slides was custom coated with a thinly sprayed layer of photocatalytic titanium dioxide. Crystal violet was then applied to these titanium-dioxide coated slides and to uncoated control slides. The slides were then illuminated at various light levels from the dye side of the slide by the UV LED array. To monitor dye degradation on the slides over time, a temperature-stabilized white light LED was used to illuminate the opposite side of the slides. As the dye degraded, the amount of light from the white light LED transmitted through the slide was monitored with a spectrometer and subsequently analyzed to determine and compare the rate of dye degradation for photocatalytically coated versus uncoated slide surfaces. The long-term stability of the spectrometer/white light LED combination, which required only a single reference spectra to be taken for a time series sequence of several hours, enabled accurate measurements of transmitted light over time. Time series transmission curves were generated and results demonstrated that over time the transmission increased much more rapidly on the coated slides than on the control slides. This experimental configuration and methodology for photocatalytic activity measurement minimizes many external variable effects and allows low light level studies to be performed. This study also compares the advantages of this novel LED light source design to traditional mercury lamp systems and non-LED lamp approaches that have conventionally been used. The methodology and experimental design research summarized in this abstract is partly funded by the Department of Homeland Security, Science and Technology Directorate, and by the NASA Stennis Space Center Innovative Partnerships Program

    Novel Hyperspectral Sun Photometer for Satellite Remote Sensing Data Radiometric Calibration and Atmospheric Aerosol Studies

    Get PDF
    A simple and cost-effective, hyperspectral sun photometer for radiometric vicarious remote sensing system calibration, air quality monitoring, and potentially in-situ planetary climatological studies, was developed. The device was constructed solely from off the shelf components and was designed to be easily deployable for support of short-term verification and validation data collects. This sun photometer not only provides the same data products as existing multi-band sun photometers, this device requires a simpler setup, less data acquisition time and allows for a more direct calibration approach. Fielding this instrument has also enabled Stennis Space Center (SSC) Applied Sciences Directorate personnel to cross calibrate existing sun photometers. This innovative research will position SSC personnel to perform air quality assessments in support of the NASA Applied Sciences Program's National Applications program element as well as to develop techniques to evaluate aerosols in a Martian or other planetary atmosphere

    AWiFS Radiometric Assessment

    Get PDF
    An assessment of the Advanced Wide Field Sensor (AWiFS) is presented. The contents include: 1) Overview of AWiFS sensor; 2) Description of University of Arizona approach; 3) Description of South Dakota State approach and results; 4) Description of Stennis Space Center approach and results; 5) Summary of results for all groups

    Evaluation of the Harmful Algal Bloom Mapping System (HABMapS) and Bulletin

    Get PDF
    The National Oceanic and Atmospheric Administration (NOAA) Harmful Algal Bloom (HAB) Mapping System and Bulletin provide a Web-based geographic information system (GIS) and an e-mail alert system that allow the detection, monitoring, and tracking of HABs in the Gulf of Mexico. NASA Earth Science data that potentially support HABMapS/Bulletin requirements include ocean color, sea surface temperature (SST), salinity, wind fields, precipitation, water surface elevation, and ocean currents. Modeling contributions include ocean circulation, wave/currents, along-shore current regimes, and chlorophyll modeling (coupled to imagery). The most immediately useful NASA contributions appear to be the 1-km Moderate Resolution Imaging Spectrometer (MODIS) chlorophyll and SST products and the (presently used) SeaWinds wind vector data. MODIS pigment concentration and SST data are sufficiently mature to replace imagery currently used in NOAA HAB applications. The large file size of MODIS data is an impediment to NOAA use and modified processing schemes would aid in NOAA adoption of these products for operational HAB forecasting

    Stennis Space Center Verification & Validation Capabilities

    Get PDF
    Scientists within NASA s Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial and moderate resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data

    Emerging Techniques for Vicarious Calibration of Visible Through Short Wave Infrared Remote Sensing Systems

    Get PDF
    Autonomous Visible to SWIR ground-based vicarious Cal/Val will be an essential Cal/Val component with such a large number of systems. Radiometrically calibrated spectroradiometers can improve confidence in current ground truth data through validation of radiometric modeling and validation or replacement of traditional sun photometer measurement. They also should enable significant reduction in deployed equipment such as equipment used in traditional sun photometer approaches. Simple, field-portable, white-light LED calibration source shows promise for visible range (420-750 nm). Prototype demonstrated <0.5% drift over 10-40 C temperature range. Additional complexity (more LEDs) will be necessary for extending spectral range into the NIR and SWIR. LED long lifetimes should produce at least several hundreds of hours or more of stability, minimizing the need for expensive calibrations and supporting long-duration field campaigns
    corecore