AWiFS Radiometric Assessment

3 Presentations: University of Arizona Kurt Thome South Dakota State University David Aaron SSC: Science Systems and Applications, Inc Mary Pagnutti

Civil Commercial Imagery Evaluation Workshop Laurel, MD March 14-16, 2006

Kurt Thome College of Optical Sciences, University of Arizona kurt.thome@optics.arizona.edu College of Optical Scie es THE UNIVERSITY OF ARIZE NA

TUCSON

ONA

3/13/2006

Background

A wide range of sensor data has become available over the past five years

- The data from these sensors must be characterized to understand their quality and how they compare with other sensor's data
- The Indian Remote Sensing (IRS) P6 Advanced Wide Field Sensor (AWiFS) sensor is one of these
 - USDA Foreign Agriculture Service (FAS) approached NASA to perform an initial characterization (*Nov. 2004*)
 - Space Imaging was granted a license to receive and distribute AWiFS imagery from their ground station in Oklahoma (*Jan. 2005*)
 - Space Imaging agreed to provide 16 of images to Stennis Space Center for characterizations and USDA FAS agreed to share a portion of their AWiFS image archive

Background

SSC coordinating with multiple groups to assess radiometric and spatial quality of AWiFS data

- Reduces duplication of effort while improving product characterizations and hopefully leading to improved products
- "This" talk covers the radiometric results obtained by the groups at South Dakota State University, SSC, and University of Arizona
- All groups use the reflectance-based approach
 - Determine surface reflectance
 - Characterize atmospheric conditions
 - At-sensor radiance from radiative transfer code
 - Compare with radiance reported by sensor

Talk outline

- Overview of AWiFS sensor
- Description of University of Arizona approach
 - Reflectance-based approach
 - Ground-monitor radiometer approach
 - Results for AWiFS
- Description of South Dakota State approach and results
- Description of Stennis Space Center approach and results
- Summary of results for all groups

AWiFS description

AWiFS (Advanced Wide Field Sensor) is a multispectral camera on the IRS-P6 platform

- IRS-P6 (Indian Remote Sensing) Satellite also known as RESOURCESAT-1 is a multiple sensor platform
- IRS-P6 was launched on October 17, 2003 into a polar orbit from Satish Space Center by the Indian PSLV-C5
- Polar sun-synchronous orbit (altitude of 817 km)
- Platform carries
 - LISS-III
 - LISS-IV (mono and mx modes)
 - AWiFS A and B sensors

AWiFS description

While spatial resolution is slightly poorer than Landsat the wider swath is an advantage

- Pushbroom-based sensor
- Four bands: 0.52-0.59, 0.62-0.68, 0.77-0.86, 1.55-1.70 µm
- Spatial Resolution is 56 m at nadir (70 m near edge of swath)
- Radiometric Resolution is 10 bit
- Swath is 740 km
- Repeat time is 5 days
- Design life is 5 years

AWiFS Collection Approach

The AWiFS camera is split into two separate electro-optic modules (AWiFS-A and AWiFS-B) tilted by 11.94 degrees with respect to nadir

AWiFS – ETM+ comparison

Number of Samples

- ETM+: ~144 points per 40 acre field
- AWiFS: ~36 points per 40 acre field

Repeat Coverage

- Landsat 7: 16 days
- AWiFS: 5 days

Swath

- Landsat 7: 185 km
- AWiFS: 737 km

Bands

- Landsat 7 ETM+: 7 bands
- AWiFS: 4 bands (no blue, 2.2µm, thermal) 8

Reflectance-based approach

RTC Code

Measurements of surface reflectance of a homogeneous test site

Predict at-sensor radiance for a selected area of the site and compare to imagery

Measurements of atmospheric conditions

Atmospheric retrievals

Solar radiometer data provides optical depths as a function of wavelength and time

Reflectance retrieval

Characterized a 300 m by 80 m area in fashion similar to that used by other sensors

- Measurements of the site are made with reference to a panel of known reflectance
- Confidence that sampling approach is still valid since several 50-m sensors have been done previously for other projects
- Location of site relies on the geolocation information with the imagery

UofA Test Sites

Ivanpah Playa (3 km by 5 km) on the bottom right and RRV Playa (about 35 km in size) at top right

Data sets

Three attempts were made in summer 2005 to collect data for AWiFS

- June 18 at Ivanpah Playa
 - ETM+ and Terra on June 18
 - Landsat-5 overpass on June 17 at RRV Playa
 - Aqua overpass on June 19 at RRV Playa
- June 23 at Ivanpah Playa
 - Ikonos also on June 23
 - Smoke-filled skies
- August 10 at Railroad Valley Playa
 - ETM+ and Terra overpass on August 12
 - Orbview overpass on August 10
 - Landsat-5 overpass on August 13 at Ivanpah

Alternate approach

Wide swath of AWiFS allowed for an alternative data collection approach

- Sensor images both Ivanpah and Railroad Valley Playas on same date
- Offers an opportunity to obtain two calibrations on the same date between the two sites
 - One option is to have two groups deployed simultaneously
 - Other option is to have automated instrumentation operating at one site
- UofA has deployed automated sensors to characterize the surface and atmospheric conditions since 2003
 - Atmospheric characterization derived from AERONET data
 - Meteorological data collected with a met station
 - Site reflectance monitored with LED-based radiometers

Automated instrumentation

- AERONET instrument provides identical style inputs as obtained by on-site personnel operating similar instruments
- LED-based radiometer is a stationary, multi-spectral sensor
 - Built in house with green, red, and NIR bands
 - Currently have five such instruments deployed at RRV Playa

Radiometer evolution

Added data set

Automated data provided an opportunity to add two additional data sets for evaluation

- No added cost for imagery
- June 18 and 23 were targeted as Ivanpah Playa collections
 - Group was at Railroad Valley Playa just prior to these dates
 - Goal was to modify those collections based on the automated data
- Unfortunately, June 23 was cloudy at RRV Playa

June 18 automated data

Reflectance change

3/13/2006

- Computed reflectance from LED radiometers for both June 17 and 18
- Compute percent difference between days by band
- Scale the June 17 hyperspectral reflectance by the average percent difference

Results

Graph below shows results from all three dates including the automated results

- Results below show the percent difference between the predicted radiance and that based on supplied calibration
- Positive percent difference implies that the predicted radiance is greater than the reported

Confidence Level

Examine the AWIFS results relative to results from other sensors near in time

Results show the difference between average for a given sensor and the results for a given date

Summary

Standard deviation of the average is similar to that for other sensors giving confidence to results

- Results are slightly better without LED results
 - 1.3 to 3.7% standard deviations (for three data sets)
 - Other sensor results typically show <3%
 - Implies self consistency within the data set
- Previous graph also implies that AWIFS results are of similar absolute uncertainty as for other sensors (<3% in</p>

