57 research outputs found

    Erd\'elyi-Kober Fractional Diffusion

    Full text link
    The aim of this Short Note is to highlight that the {\it generalized grey Brownian motion} (ggBm) is an anomalous diffusion process driven by a fractional integral equation in the sense of Erd\'elyi-Kober, and for this reason here it is proposed to call such family of diffusive processes as {\it Erd\'elyi-Kober fractional diffusion}. The ggBm is a parametric class of stochastic processes that provides models for both fast and slow anomalous diffusion. This class is made up of self-similar processes with stationary increments and it depends on two real parameters: 0<α≤20 < \alpha \le 2 and 0<β≤10 < \beta \le 1. It includes the fractional Brownian motion when 0<α≤20 < \alpha \le 2 and β=1\beta=1, the time-fractional diffusion stochastic processes when 0<α=β<10 < \alpha=\beta <1, and the standard Brownian motion when α=β=1\alpha=\beta=1. In the ggBm framework, the Mainardi function emerges as a natural generalization of the Gaussian distribution recovering the same key role of the Gaussian density for the standard and the fractional Brownian motion.Comment: Accepted for publication in Fractional Calculus and Applied Analysi

    Short note on the emergence of fractional kinetics

    Get PDF
    In the present Short Note an idea is proposed to explain the emergence and the observation of processes in complex media that are driven by fractional non-Markovian master equations. Particle trajectories are assumed to be solely Markovian and described by the Continuous Time Random Walk model. But, as a consequence of the complexity of the medium, each trajectory is supposed to scale in time according to a particular random timescale. The link from this framework to microscopic dynamics is discussed and the distribution of timescales is computed. In particular, when a stationary distribution is considered, the timescale distribution is uniquely determined as a function related to the fundamental solution of the space-time fractional diffusion equation. In contrast, when the non-stationary case is considered, the timescale distribution is no longer unique. Two distributions are here computed: one related to the M-Wright/Mainardi function, which is Green's function of the time-fractional diffusion equation, and another related to the Mittag-Leffler function, which is the solution of the fractional-relaxation equation

    Nonlinear Time-Fractional Differential Equations in Combustion Science

    Get PDF
    MSC 2010: 34A08 (main), 34G20, 80A25The application of Fractional Calculus in combustion science to model the evolution in time of the radius of an isolated premixed flame ball is highlighted. Literature equations for premixed flame ball radius are rederived by a new method that strongly simplifies previous ones. These equations are nonlinear time-fractional differential equations of order 1/2 with a Gaussian underlying diffusion process. Extending the analysis to self-similar anomalous diffusion processes with similarity parameter ν/2 > 0, the evolution equations emerge to be nonlinear time-fractional differential equations of order 1−ν/2 with a non-Gaussian underlying diffusion process

    The M-Wright function in time-fractional diffusion processes: a tutorial survey

    Full text link
    In the present review we survey the properties of a transcendental function of the Wright type, nowadays known as M-Wright function, entering as a probability density in a relevant class of self-similar stochastic processes that we generally refer to as time-fractional diffusion processes. Indeed, the master equations governing these processes generalize the standard diffusion equation by means of time-integral operators interpreted as derivatives of fractional order. When these generalized diffusion processes are properly characterized with stationary increments, the M-Wright function is shown to play the same key role as the Gaussian density in the standard and fractional Brownian motions. Furthermore, these processes provide stochastic models suitable for describing phenomena of anomalous diffusion of both slow and fast type.Comment: 32 pages, 3 figure

    Time-fractional diffusion of distributed order

    Full text link
    The partial differential equation of Gaussian diffusion is generalized by using the time-fractional derivative of distributed order between 0 and 1, in both the Riemann-Liouville (R-L) and the Caputo (C) sense. For a general distribution of time orders we provide the fundamental solution, that is still a probability density, in terms of an integral of Laplace type. The kernel depends on the type of the assumed fractional derivative except for the single order case where the two approaches turn to be equivalent. We consider with some detail two cases of order distribution: the double-order and the uniformly distributed order. For these cases we exhibit plots of the corresponding fundamental solutions and their variance, pointing out the remarkable difference between the two approaches for small and large times.Comment: 30 pages, 4 figures. International Workshop on Fractional Differentiation and its Applications (FDA06), 19-21 July 2006, Porto, Portugal. Journal of Vibration and Control, in press (2007
    • …
    corecore