In the present review we survey the properties of a transcendental function
of the Wright type, nowadays known as M-Wright function, entering as a
probability density in a relevant class of self-similar stochastic processes
that we generally refer to as time-fractional diffusion processes.
Indeed, the master equations governing these processes generalize the
standard diffusion equation by means of time-integral operators interpreted as
derivatives of fractional order. When these generalized diffusion processes are
properly characterized with stationary increments, the M-Wright function is
shown to play the same key role as the Gaussian density in the standard and
fractional Brownian motions. Furthermore, these processes provide stochastic
models suitable for describing phenomena of anomalous diffusion of both slow
and fast type.Comment: 32 pages, 3 figure