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Abstract

In the present Short Note an idea is proposed to explain tleggance and the observation of processes in complex
media that are driven by fractional non-Markovian mastaragigns. Particle trajectories are assumed to be solely
Markovian and described by the Continuous Time Random Walieh But, as a consequence of the complexity of
the medium, each trajectory is supposed to scale in timerdicgpto a particular random timescale. The link from
this framework to microscopic dynamics is discussed andlisieibution of timescales is computed. In particular,
when a stationary distribution is considered, the timesdatribution is uniquely determined as a function related
the fundamental solution of the space-time fractionfildion equation. In contrast, when the non-stationary Gase i
considered, the timescale distribution is no longer unigheo distributions are here computed: one related to the
M-Wright/Mainardi function, which is Green’s function of the timedftional difusion equation, and another related
to the Mittag—Léfler function, which is the solution of the fractional-reléira equation.

Keywords: Fractional kinetics, Continuous Time Random Walk, supsitfon, Mittag—Lefler function,
M-Wright/Mainardi function

1. Introduction

Fractional kinetics is associated to phenomena governedigtions built on fractional derivatives. This approach
has turned out to be successful in modebmgpmalous dfusionprocesses.

The labelanomalous dfusionis used in contrast tnormal djfusion where the adjectiveormalhas the double
aim of highlighting that a Gaussian based process is coreideecause of the correspondence between the Normal
and the Gaussian density) and that it is a typical and ustfakitin process. The observation in nature of anomalous
diffusion has been definitively established, see El@ ﬁ 2,3].

A number of stochastic approaches to explaining anomalgtissibn has been introduced in the literature. One
of the most successful is the Continuous Time Random WallR@)Y[4,(5,[6] 7| B9, 10].

However, recalling the simplicity of physical laws, in tBample Lessons from Complextiayght by Goldenfeld &
Kadandt [|1__'1|], the authors’ first reply to the questit®o why, if the laws are so simple, is the world so complicated
is

"To us, complexity means that we have structure with vasizgi Thus a living organism is complex because it
has many dferent working parts, each formed by variations in the wogkaut of the same genetic code”

and finally that

"Complex systems form structures, and these structuregwately in size and duration. Their probability distri-
butions are rarely normal, so that exceptional events artera®.”
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With this in mind, here solely the simplest CTRW model is ddesed, i.e. the Markovian one. However, notwith-
standing this simplest framework, it is argued that anomaftiffusion emerges as a consequence of the underlying
variations of the structures of the medium from whicwide range of random timescales follows. Hence, each par-
ticle trajectory is supposed to scale in time accordinggmivn timescale. This because any trajectory realization
is supposed to occur in a random configuration of the mediuanaciterized by its own timescale. In other words,
the main idea discussed in this Short Note is that processebe in general simply Markovian, but, during the ob-
servation procedure, what is actually measured is the popiion of processes of the same type but witfiedent
reference scales, as a consequence of structure variations

Randomness of the timescale can be re-phrased as fluctuafitre timescale. This latter concept can be linked
with the pioneering work by Beck [12] that has led to so-ahieiperstatistics [13]. However, the present research
differs from that because it starts from &elient explanatory idea and it is based on particle trajextenodeled by
a CTRW rather than by the Langevin equation, even thoughtim teses a superposition integral is used. Moreover,
through the velocity autocorrelation function, it has a mection with the microscopic dynamics described by a
I—i[Ea}monian approach for the Brownian motidn|[14] and by #tecalled “semidynamicalV-Langevinapproach

, ]

The present research is quite close to a recent work by Pleuhekal. [@]. In particular, since the CTRW is
adopted, the present formalism can be related to the sedcstibchastic central limit theoreE_tl?]. But, again, in the
present research, the superposition formalism is intredily some arguments linked to microscopic dynamics and
not as a mathematical tool. Moreover, with respect to thexgiPramukkukt al. [17], here some results concerning
the timescale distribution function are also presenteddistlissed.

The main features of CTRW are the following. Lpfr,t) be thepdf for a particle to be at at the timet.
Moreover, leti(6r) be thepd f for a particle to make a jump of lengéin after a waiting timer whosepd f is denoted

T

by (7). Since the integrall (&) d¢ represents the probability that at least one step is madeitemporal interval
0
O, 7) [@,@], the probability that a given waiting interval betan two consecutive jumps is greater than or equal to
isY(r)=1- f () d¢ and the equation
0

o) = - @

holds @,EB]. Henceél(t) is the probability that, after a jump, thefidising quantity does not change during the
temporal interval of duration and it is thesurvival probabilityat the initial position([6].
When jumps and waiting times are statistically independbetmaster equation of the CTRW modelis [8]

j:fl)(t—‘r Z—Edrz—p(r,t)+Z/l(r—r')p(r’,t), 2)

Whereﬁ(s) = ‘?(s)/fﬁ(s) is a memory kernel and tilde symbélmeans the Laplace transform. _
From equation((?2) it follows that a Markovian process is oi#d whend(r) = 6(7), which implies thatb(s) = 1
so that®(s) = ¥(s) and finally¥(r) = (7). Functions¥(r) andy(r) are related by({1), so then a CTRW model
is Markovian if¥(r) = e. Equivalently, when¥(r) is different from an exponential function, the resulting CTRW
model is non-Markovian or, by using mathematical termigg|adt belongs to the class of semi-Markov process.
Assume a complex medium is formed by randomly variable &ires characterized by individual scales for each
configuration. Hence, for any Markovian-CTRW trajectolyg time variablg and the waiting-timer have to be
scaled by a particular random timescaleln particular, the survival probability(r) turns out to be

Y(r) =¥Y(r/T)=e"T. (3)

The ratior/T for any observation time is a random variable becaugea random variable.
In a pioneering paper by Hilfer & Anton in 1995 [6], it was shothat if the survival probability(r) is

P(1) = Eg(-7*), 0<p<1, (4)



whereEz(2) is the Mittag—Léfer function defined amﬂo, Appendix E]

- 2
E = _—
52 ;Fwnﬂ), zeC, (5)
then the process is governed by the following fractional-Markovian master equation
#p Aot
o =—p(r,t)+Z/1(r—r)p(r,t), 0<p<1, (6)

Whereg‘T; can be the fractional derivative operator both in the Riemduouville and in the Caputo sen@[Zl]. Itis

well known that a survival probability of the Mittag—ter type [#), when O< 8 < 1, decreases asymptotically for
T — oo With the power lawr, see e.g.@O, Section 1.3], thus slower than the survivabability of exponential
type [3) and so large-waiting-time events are not rare, in@gent with Goldenfeld & Kada]. The Markovian
case is recovered whegh= 1, becausé&;(-2) = €% Non-Markovian CTRW models with a survival probability of
the Mittag—Ldfler type [@) have been widely studied, see é:kﬂ[ES, 10].

Let f(T,t) be the probability density function of timescalewith normalization condition| f(T,t)dT = 1.
0

Then a non-Markovian process follows from afif, t) for which
[ mem frodaT= v, wem=e 7)
0
holds, whereM stands for Markovian. In particular, wheqd (4) holds, foram{) reads

f eVT f(T,0)dT = Es(-¥¥), 0<pB<1, (8)
0
and a fractional kinetics governed by non-Markovian mastgration[(6) arises.

Equations[(B) and{7) embody the relationship between tbggmt approach and the stochastic central limit theo-
rem, see|ﬁ|7, Equation (36)].

However, the CTRW model is a purely random process and aatfaeships with the microscopic dynamical laws
are neglected. The microscopic level is generally desdrifyeadopting the deterministic Hamiltonian formalism of
classical mechanics. But the Hamiltonian approach is vendighly dificult and prohibitive for handling transport
phenomena. The hard task of mapping Hamiltonian and dibgipsystems is not attempted in the present Short Note.

Nevertheless, the derivation of the motion of a Browniariplarin a fluid of lighter particles from a Hamiltonian
description has been presented by Wsil. [IE Section 1.2.1]. The energy has been split into the sutheofluid
energy, the energy of the Brownian particle and the enengthfar interaction. In particular, the fluid background is
modeled as a heat bath with a system of harmonic oscilldfomrshermore a generalized Langevin equation is derived
where the stochastic interpretation of the driving forcimgntroduced by noting that the initial state of the bath is

uncertain and it is in general only determined via a distridsuof initial states|[14, Equation (1.34)]. Under certain
conditions, the velocity autocorrelation functi®(t) turns out to satisfy the integral equation|| , 14, Eiqua
(1.72)]

oR t

—=-C | «(t-?DR()dr, 9)

ot 0

wherex(t) represents the correlation function of the stochasticgfam the corresponding generalized Langevin equa-
tion andC is a particular constant related to the Hamiltonian functio

A further tractable starting point, that is closer than CTE\the microscopic dynamics, is provided by a “semidy-
namical” formalism based on an equation of motion of Newdar{or Hamiltonian) type for a tracer particle moving
in the presence of a random potential. This is an intermediascription in which some statistical properties of the

microscopic particle velocity are supposed to be knowrs talledV-Langevinequation and it read 16]
dr
g = VO, @) =0, wiO)vi®) = R;(®). (10)
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In theone-dimensionatase, a realistic microscopic model has been derived bysBalassuming the local approxi-
mation E‘L‘Eb] The evolution equation for the partipiéf turns out to be|_L_1|ﬂ6]

op &

t
5 a2 f R(t - 7) p(r,7) dr. (12)

Equation[(Il) was derived also by Grigolini by using fundataéarguments of statistical mechanics and the condition
thatv(t) is a two-state systerE[lZ4]; see also the derivation by Aiikegt al. [@].

Through the autocorrelation functid?(t), what follows establishes a relation with the microscd@miltonian
description. In fact, by applying the local approximatidsoato [2), i.e.A(k) = 1-«% + ... where symbol~ means
Fourier transform, its relationship with{11) becomes ewichnd it holds [16]

1

e = s+R(S)

(12)

Indeed, the survival probability(t) of a CTRW model is microscopically determined by the autoslation func-
tion R(t) of the particle velocity. Fron{{7) it follows that even thistdibution of timescalef (T, t) is linked to the
autocorrelation functioR(t) of microscopic velocity. In fact

fo e {fo ‘PM(t/T)f(T,t)dT} dt
* * —(s+1/T)t _ ® =
fo {fo e f(T.1) dt} dT = fo f(T,s+1/T)dT (13)

and the distributiorf (T, t) is seen to be related &(s) by

Y(s)

1
s+R(S

fw f(T.s+1/T)dT = (14)
0

To conclude the issue of microscopic connections, forniliB) due to Balescd__[_iG] establishes a connection
between CTRW approach and microscopic dynamics, whileditarf4) establishes a connection between timescale
distribution f(T, t) and microscopic dynamics. However, it is here recalled fitvanulae [12) and{14) hold solely
in the one-dimensionatase with local approximation, but formu[d (8) is of genexaidity. Hence, formula{8) is
further analyzed.

In the framework of fractional kinetics, when the survivabpability \¥(t) is of the Mittag—Léfler type [4), the
equation¥(s) = £1/(¢ + 1) holds and fromi{22) it follows thak(s) = s'#. Let Ty be the  single existing timescale
in the Markovian case, theH(t/Ty) = e/™ and¥(s) = 1/(s+ 1/Tw) so that from[IRRw(s) = 1/Ty and then
Rwu(t) = 6(t)/Tw. Finally from [I3) it follows thatfy (T, t) = 6(T — Tu) which leads to the single timescale= Ty.

Distribution of timescale$(T, t) in the non-Markovian case can be obtained by analysis dfkmeiwn results on
the Mittag—Lefler function ). An updated list of results can be found intbek by Mainardi|L_2b, Appendix E] and
in the review paper by Haubokt al. [IE].

In particular, it is possible to establish uniquely the tsmale distribution in thetationarycase, i.e.f(T,t) =
£S(T). In fact, it is well known that the equation

fw eV Ks(y)dy = Eﬁ(—tﬁ), 0<p<1 (15)
0
holds [21/ 2D], where .
1 ~*sin(@n)
Koly) = m 1+ 2yfcosfr) +y#’ (16)

so that, comparing{8) and{15), it follows that #tationarytimescale distributiorf S(T) is

5 = 75k a7)
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It is worth remarking that the distributio; defined in [Ib) is related to the fundamental solution of {hecs-
time fractional dffusion equation when both the space and time fractional srofederivation are equal t6 and
the asymmetry parameter assumes the extremal value sucthéhfunction support is the positive real axed [26].
This pdf has emerged in numerical studies on particle displacemertrial flows in non-dfusive chaotic transport
by Rossby waves [27] and in plasma turbulence when Larrffects are taken into accoum28] Such a kind of
fractional difusion process is also referred to as neutral-fractiorfaiglon Eb]. In the Markovian limit, i.eg = 1,
the relationk (y) = sinz/[x (y — 1)?] — &(y — 1) holds and a single timescale follows.

When anon-stationanydistribution is desired, the timescale distributibfT, t) is no longer unique. This can be
shown by applying the change of variabld = q to the integrall(B) which becomes

fw e9H(g,t)dg= Eg(-t¥), 0<pB<1, (18)
0

whereH(q,t) = f(t/g,t)t/g? is the kernel of an integral transformation. The same t@nshtion pair 9 «—s

Es(—t%) can be obtained from fierent kernels. In this respect, in what follows, tnon-stationanydistributions are

derived. Hence a further constraint is needed to selecuehidghe timescale distribution in then-stationarycase.
A non-stationanydistribution f (T, t) can be obtained by the following formula [20, Appendix F]

foo e %?Mg(2)dz= Es(-5), 0<pB<1, (19)
0
where )
N (-2 (2™
Mg(2) = Z T ( T3 - Z oD T(8n) sin@pn), (20)

so that, after the change of variabfes= g ands = t%, from comparing[(1I8) and[(19) it follows that

H@ = 5Ms(3) (21)

and anon-stationantimescale distribution turns out to be
1 tl i
f(T.t) = = tﬁMﬁ( ) 0<pB<1. (22)

The Markovian case is recovered whe 1 because of the property1(2) = 5(z- 1).

The functionM; is a transcendental function of the Wrightty@ , 31]s kliso referred to as M-Wrigiainardi
function because it was originally obtained by Mainarditas fundamental solution of the time-fractionaffdsion
equation EIZ]. It has been shown that when such fractiorfilglon processes are properly characterized with sta-
tionary increments, the M-Wrightlainardi function plays the same key role as the Gaussiasitydior the standard
and fractional Brownian motlonab|3_h|34] The propertiethaf corresponding master equation lead to suftfasion
processes being named as Erdélyi—-Kober fractiorfdglon @L_s_b] Actually, the M-WrighMainardi function has
turned out to be related also to the quadratic variationdomgound renewal processes|[37]. Further properties on the
M-Wright/Mainardi function can be found in Referenced [31, 20, Cheaptnd Appendix F].

A furthernon-stationanydistribution can be derived by using the following form@I

1 (7 o21m
— e Exs(—7F) dz= Eg(—tF), 23
= o) dz= Ey(—t) 23)
so that 1
H(g.t) = arat Exl-(4q1/], (24)
and the correspondingpn-stationandistribution is
1 2t \*
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In order to have a non-negative distribution, the parameterust be constrained by @ 28 < 1, according to
complete monotonicity property of the Mittag—fler function Eb Appendix E]. This constraint avoids thegibaity
of recovering the Markovian limjg = 1.

It is worth highlighting that the survival probabilitifl(4 e timescale distributiod (25) are functions of the same
type, i.e. E,(-z%) with 0 < @ < 1, which is the solution of the fractional-relaxation edua@,@]. This strong
relationship is in agreement with the physically sound itee there exists a deep interrelation between the streictur
of the medium into which particlesfiiuse and the characteristics of particle jumps. These etectfeatures of the
system are embodied by the timescale distribufifh t) and by the survival probability¥(t/T), respectively.

Summarizing, in this Short Note an idea is proposed to engla emergence and observation of fractional
kinetic processes. The idea is based on the fact that anglparajectory experiences affirent random timescale
as a consequence of the variations of the underlying stretuHence, observed processes can be understood as
the superposition of particle trajectories driven by a daridarkovian CTRW model but, as a consequence of the
variations of the structures, each one scaled with its omedcaleT. This is in agreement with Goldenfeld &
Kadandf’s definition of complexity], where complexity meansthize medium forms structures that vary widely
in size and duration.

In this formulation, a single real and measured time is @®reid and it is not turned into a random variable.
But, since any configuration of structures is assumed to bdora, the characteristic timescaleis random and
distributed according to the probability density functib@, t). The densityf (T, t) has emerged to be related to the
autocorrelation function of microscopic particle velgciHowever, the density(T,t) can be uniquely determined
only when it is assumed to lsationary

Acknowledgements

The author would like to thank anonymous referees for ugefulrks and also acknowledges helpful suggestions
and support from Doctor P. Paradisi and Professors F. Mdiirar Scalas and D. Chillingworth.

References

[1] N. Mercadier, W. Guerin, M. Chevrollier, R. Kaiser, Lgflights of photons in hot atomic vapours, Nature Phys. 528D0) 602—605.
[2] S.Ratynskaia, K. Rypdal, C. Knapek, S. Khrapak, A. V.dx@nov, A. Ivlev, J. J. Rasmussen, G. E. Morfill, Sup@udion and viscoelastic
vortex flows in a two-dimensional complex plasma, Phys. Rett. 96 (10) (2006) 105010.
[3] E.Barkai, Y. Garini, R. Metzler, Strange kinetics of gie molecules in living cells, Phys. Today 65 (8) (2012) 223
[4] D. Fulger, E. Scalas, G. Germano, Monte Carlo simulatibancoupled continuous-time random walks yielding a sastk solution of the
space-time fractional ffusion equation, Phys. Rev. E 77 (2008) 021122.
[5] R. Gorenflo, F. Mainardi, Some recent advances in thendysamulation of fractional diusion processes, J. Comput. Appl. Math. 229 (2)
(2009) 400-415.
[6] R. Hilfer, L. Anton, Fractional master equations anccfed time random walks, Phys. Rev. E 51 (2) (1995) R848-R851.
[7] J.Klafter, A. Blumen, M. F. Shlesinger, Stochastic pedly to anomalous €iusion, Phys. Rev. A 35 (7) (1987) 3081-3085.
[8] F. Mainardi, M. Raberto, R. Gorenflo, E. Scalas, Fradlaalculus and continuous-time finance II: the waitingetidistribution, Physica A
287 (3-4) (2000) 468-481.
[9] E.W. Montroll, G. H. Weiss, Random walks on lattices.Jl Math. Phys. 6 (2) (1965) 167—-181.
[10] E. Scalas, R. Gorenflo, F. Mainardi, Uncoupled contirsitime random walks: Solution and limiting behavior of thaster equation, Phys.
Rev. E 69 (2004) 011107.
[11] N. Goldenfeld, L. P. Kadarffy Simple lessons from complexity, Science 284 (1999) 87-89.
[12] C. Beck, Dynamical foundations of nonextensive stiatis mechanics, Phys. Rev. Lett. 87 (18) (2001) 180601.
[13] C. Beck, E. G. D. Choen, Superstatistics, Physica A 2BD8) 267-275.
[14] B.J. West, M. Bologna, P. Grigolini, Physics of FradBperators, Springer-Verlag, New York, 2003.
[15] R. Balescu, Aspects of Anomalous Transport in Plasmagpr & Francis, London, 2005.
[16] R. Balescu, V-Langevin equations, continuous timeloan walks and fractional ffusion, Chaos Solitons Fract. 34 (2007) 62—80.
[17] P.Pramukkul, A. Svenkeson, P. Grigolini, M. Bologna JBWest, Complexity and fractional calculus, Adv. Mathy®2013 (2013) 498789.
[18] E. Scalas, R. Gorenflo, F. Mainardi, Fractional calsudnd continuous-time finance, Physica A 284 (2000) 376-384.
[19] H.J. Haubold, A. M. Mathai, R. K. Saxena, Mittag-filer functions and their applications, J. Appl. Math. 20111(P0298628.
[20] F. Mainardi, Fractional Calculus and Waves in Lineasddelasticity, Imperial College Press, London, 2010.
[21] R. Gorenflo, F. Mainardi, Fractional calculus: intdgaad diferential equations of fractional order, in: A. Carpintdti,Mainardi (Eds.),
Fractals and Fractional Calculus in Continuum Mechanipsin§er—Verlag, Wien and New York, 1997, pp. 223-276.
[22] P. Grigolini, Theoretical foundations, Adv. Chem. Bhg2 (1985) 1-27.
[23] P. Grigolini, A. Rocco, B. J. West, Fractional calcuasa macroscopic manifestation of randomness, Phys. R&/(H £1999) 2603-2613.

6



[24]
[25]
[26]

[27]
(28]

[29]
[30]
(31]

[32]
(33]

[34]
[35]

[36]
[37]

P. Grigolini, The projection approach to the FokkeafiRlk equation: applications to phenomenological stozhasguations with colored
noises, in: F. Moss, P. V. E. McClintock (Eds.), Noise in Noear Dynamical Systems, Vol. 1, Cambridge University Br&€&ambridge,
1989, Ch. 5, pp. 161-190.

P. Allegrini, P. Grigolini, B. J. West, Dynamical ap@ch to Lévy processes, Phys. Rev. E 54 (5) (1996) 4760-4767.

F. Mainardi, Y. Luchko, G. Pagnini, The fundamentalwgian of the space-time fractionalfflision equation, Fract. Calc. Appl. Anal. 4 (2)
(2001) 153-192.

D. del Castillo-Negrete, Non-flusive, non-local transport in fluids and plasmas, NonliecBsses Geophys. 17 (2010) 795-807.

K. Gustafson, D. del Castillo-Negrete, W. Dorland, iEgrLarmor radius fects on nondfusive tracer transport in zonal flows, Phys. Plasmas
15 (2008) 102309.

Y. Luchko, Models of the neutral-fractional anomalali§usion and their analysis, AIP Conf. Proc. 1493 (2012) 628-63

F. Mainardi, G. Pagnini, The Wright functions as saus of the time-fractional éiusion equations, Appl. Math. Comput. 141 (2003) 51-62.
F. Mainardi, A. Mura, G. Pagnini, The M-Wright functian time-fractional difusion processes: A tutorial survey, Int. Jfiei. Equations
2010 (2010) 104505.

F. Mainardi, Fractional relaxation-oscillation arrddtional difusion-wave phenomena, Chaos Solitons Fract. 7 (1996) 1467~

A. Mura, G. Pagnini, Characterizations and simulaiaf a class of stochastic processes to model anomal@usidn, J. Phys. A: Math.
Theor. 41 (2008) 285003.

G. Pagnini, The M-Wright function as a generalizatidinttee Gaussian density for fractionalfiision processes, Fract. Calc. Appl. Anal.
16 (2) (2013) 436-453.

G. Pagnini, The evolution equation for the radius of arpixed flame ball in fractional fiusive media, Eur. Phys. J. Special Topics 193
(2011) 105-117.

G. Pagnini, Erdélyi—Kober fractionalfiiision, Fract. Calc. Appl. Anal. 15 (1) (2012) 117-127.

E. Scalas, N. Viles, On the convergence of quadrati@tian for compound fractional Poisson processes, Fraaic.@\ppl. Anal. 15 (2)
(2012) 314-331.



	1 Introduction

