5 research outputs found
Regulation of selenoprotein mRNA expression by hormones and retinoic acid in bovine mammary cells.
Selenium is essential for maintaining many body functions through the actions of selenoproteins. To find factors regulating selenoprotein biosynthesis in the bovine mammary cell line MAC-T, the effects of supplementation with selenite and also with retinoic acid, insulin, hydrocortisone and prolactin on the mRNA expression of a number of selenoproteins were investigated. It was found that MAC-T cells express glutathione peroxidase (GPx) 1 and 4, thioredoxin reductase 1 and selenoprotein P, but not GPx 3, which is interesting considering that GPx 3 is one of the only few selenoproteins detected in milk so far. Addition of selenite to the cell culture resulted in a large increase in GPx 1 expression and an increase in selenoprotein P expression, which is similar to the findings made in other systems investigated. Increased mRNA levels of GPx 1 were also observed in cells treated with insulin and hydrocortisone or with retinoic acid. The expression of thioredoxin reductase 1 was increased in cells treated with retinoic acid, whereas that of selenoprotein P was decreased in cells exposed to insulin. The results indicate that several hormones, selenium, and retinoic acid regulate the biosynthesis of various selenoproteins differently in the bovine mammary cell. The possible implications of the findings for processes related to milk formation and mammary carcinogenesis will need additional investigation. Further study of the detailed mechanisms involved is also necessary
Disruption of the Acyl-CoA-binding Protein Gene Delays Hepatic Adaptation to Metabolic Changes at Weaning*
The acyl-CoA-binding protein (ACBP)/diazepam binding inhibitor is an intracellular protein that binds C14–C22 acyl-CoA esters and is thought to act as an acyl-CoA transporter. In vitro analyses have indicated that ACBP can transport acyl-CoA esters between different enzymatic systems; however, little is known about the in vivo function in mammalian cells. We have generated mice with targeted disruption of ACBP (ACBP−/−). These mice are viable and fertile and develop normally. However, around weaning, the ACBP−/− mice go through a crisis with overall weakness and a slightly decreased growth rate. Using microarray analysis, we show that the liver of ACBP−/− mice displays a significantly delayed adaptation to weaning with late induction of target genes of the sterol regulatory element-binding protein (SREBP) family. As a result, hepatic de novo cholesterogenesis is decreased at weaning. The delayed induction of SREBP target genes around weaning is caused by a compromised processing and decreased expression of SREBP precursors, leading to reduced binding of SREBP to target sites in chromatin. In conclusion, lack of ACBP interferes with the normal metabolic adaptation to weaning and leads to delayed induction of the lipogenic gene program in the liver