63 research outputs found

    DEB025 (Alisporivir) Inhibits Hepatitis C Virus Replication by Preventing a Cyclophilin A Induced Cis-Trans Isomerisation in Domain II of NS5A

    Get PDF
    DEB025/Debio 025 (Alisporivir) is a cyclophilin (Cyp)-binding molecule with potent anti-hepatitis C virus (HCV) activity both in vitro and in vivo. It is currently being evaluated in phase II clinical trials. DEB025 binds to CypA, a peptidyl-prolyl cis-trans isomerase which is a crucial cofactor for HCV replication. Here we report that it was very difficult to select resistant replicons (genotype 1b) to DEB025, requiring an average of 20 weeks (four independent experiments), compared to the typically <2 weeks with protease or polymerase inhibitors. This indicates a high genetic barrier to resistance for DEB025. Mutation D320E in NS5A was the only mutation consistently selected in the replicon genome. This mutation alone conferred a low-level (3.9-fold) resistance. Replacing the NS5A gene (but not the NS5B gene) from the wild type (WT) genome with the corresponding sequence from the DEB025res replicon resulted in transfer of resistance. Cross-resistance with cyclosporine A (CsA) was observed, whereas NS3 protease and NS5B polymerase inhibitors retained WT-activity against DEB025res replicons. Unlike WT, DEB025res replicon replicated efficiently in CypA knock down cells. However, DEB025 disrupted the interaction between CypA and NS5A regardless of whether the NS5A protein was derived from WT or DEB025res replicon. NMR titration experiments with peptides derived from the WT or the DEB025res domain II of NS5A corroborated this observation in a quantitative manner. Interestingly, comparative NMR studies on two 20-mer NS5A peptides that contain D320 or E320 revealed a shift in population between the major and minor conformers. These data suggest that D320E conferred low-level resistance to DEB025 probably by reducing the need for CypA-dependent isomerisation of NS5A. Prolonged DEB025 treatment and multiple genotypic changes may be necessary to generate significant resistance to DEB025, underlying the high barrier to resistance

    Essential Role of Cyclophilin A for Hepatitis C Virus Replication and Virus Production and Possible Link to Polyprotein Cleavage Kinetics

    Get PDF
    Viruses are obligate intracellular parasites and therefore their replication completely depends on host cell factors. In case of the hepatitis C virus (HCV), a positive-strand RNA virus that in the majority of infections establishes persistence, cyclophilins are considered to play an important role in RNA replication. Subsequent to the observation that cyclosporines, known to sequester cyclophilins by direct binding, profoundly block HCV replication in cultured human hepatoma cells, conflicting results were obtained as to the particular cyclophilin (Cyp) required for viral RNA replication and the underlying possible mode of action. By using a set of cell lines with stable knock-down of CypA or CypB, we demonstrate in the present work that replication of subgenomic HCV replicons of different genotypes is reduced by CypA depletion up to 1,000-fold whereas knock-down of CypB had no effect. Inhibition of replication was rescued by over-expression of wild type CypA, but not by a mutant lacking isomerase activity. Replication of JFH1-derived full length genomes was even more sensitive to CypA depletion as compared to subgenomic replicons and virus production was completely blocked. These results argue that CypA may target an additional viral factor outside of the minimal replicase contributing to RNA amplification and assembly, presumably nonstructural protein 2. By selecting for resistance against the cyclosporine analogue DEBIO-025 that targets CypA in a dose-dependent manner, we identified two mutations (V2440A and V2440L) close to the cleavage site between nonstructural protein 5A and the RNA-dependent RNA polymerase in nonstructural protein 5B that slow down cleavage kinetics at this site and reduce CypA dependence of viral replication. Further amino acid substitutions at the same cleavage site accelerating processing increase CypA dependence. Our results thus identify an unexpected correlation between HCV polyprotein processing and CypA dependence of HCV replication

    Development of sound-based poultry health monitoring tool for automated sneeze detection

    No full text
    © 2019 Elsevier B.V. Respiratory diseases are a major health challenge in meat chicken production. As sneezing is a clinical sign of many respiratory diseases, sound has a great potential in monitoring these diseases. This study focussed on the development of an algorithm to monitor chicken sneezing sounds in a situation where multiple birds are active and multiple noise sources are present. An experiment was designed where the sneezing from within a group of 51 chickens was recorded. 763 sneezes were annotated out of 480 min of sound recordings. First, the number of labelled sneezes of adequate quality were investigated. Then raw sound signal was filtered using spectral subtraction and split into short intervals with elevated energy that could be sneezes. This led to a highly unbalanced dataset containing only 0.24% sneezes, from which features characterising the sneezing sounds were calculated. These were then grouped into 8 different features on which the algorithm classified the sound as sneeze or no-sneeze with a sensitivity of 66.7% and a precision of 88.4%. The algorithm enabled the monitoring of the number of sneezes in the experimental group. This work represents the first step towards the development of an automated sound-based monitoring system for poultry health.status: publishe

    Imidazo[4,5-c]pyridines inhibit the in vitro replication of the classical swine fever virus and target the viral polymerase.

    No full text
    &lt;p&gt;Selective inhibitors of the replication of the classical swine fever virus (CSFV) may have the potential to control the spread of the infection in an epidemic situation. We here report that 5-[(4-bromophenyl)methyl]-2-phenyl-5H-imidazo[4,5-c]pyridine (BPIP) is a highly potent inhibitor of the in vitro replication of CSFV. The compound resulted in a dose-dependent antiviral effect in PK(15) cells with a 50% effective concentration (EC(50)) for the inhibition of CSFV Alfort(187) (subgroup 1.1) of 1.6+/-0.4 microM and for CSFV Wingene (subgroup 2.3) 0.8+/-0.2 microM. Drug-resistant virus was selected by serial passage of the virus in increasing drug-concentration. The BPIP-resistant virus (EC(50): 24+/-4.0 microM) proved cross-resistant with VP32947 [3-[((2-dipropylamino)ethyl)thio]-5H-1,2,4-triazino[5,6-b]indole], an unrelated earlier reported selective inhibitor of pestivirus replication. BPIP-resistant CSFV carried a T259S mutation in NS5B, encoding the RNA-dependent RNA-polymerase (RdRp). This mutation is located near F224, a residue known to play a crucial role in the antiviral activity of BPIP against bovine viral diarrhoea virus (BVDV). The T259S mutation was introduced in a computational model of the BVDV RdRp. Molecular docking of BPIP in the BVDV polymerase suggests that T259S may have a negative impact on the stacking interaction between the imidazo[4,5-c]pyridine ring system of BPIP and F224.&lt;/p&gt;</p

    Inhibition of Subgenomic Hepatitis C Virus RNA Replication by Acridone Derivatives: Identification of an NS3 Helicase Inhibitor

    No full text
    We report the synthesis and structure - activity relationship (SAR) of a large series of acridones and acridone-fragment derivatives designed on the basis of the selective antihepatitis C virus (HCV) activity shown by acridone 2, previously studied as a potential antibovine viral diarrhea virus (BVDV) compound. The evaluation of their ability to inhibit the HCV replication in Huh-5-2 cells led to the identification of new, selective inhibitors. This indicates that the acridone skeleton, when properly functionalized, is a suitable scaffold to obtain potential anti-HCV agents. Interestingly, during identification of possible cellular and viral targets, it was discovered that compound 23 exerts inhibitory activity on the HCV NS3 helicase, a very promising target for the development of anti-HCV drugs

    Epidemiological Dynamics of Foot-and-Mouth Disease in the Horn of Africa: The Role of Virus Diversity and Animal Movement.

    No full text
    The Horn of Africa is a large area of arid and semi-arid land, holding about 10% of the global and 40% of the entire African livestock population. The region&#8217;s livestock production system is mainly extensive and pastoralist. It faces countless problems, such as a shortage of pastures and watering points, poor access to veterinary services, and multiple endemic diseases like foot-and-mouth disease (FMD). Foot-and-mouth disease is one of the most economically important livestock diseases worldwide and is endemic in most developing countries. Within Africa, five of the seven serotypes of the FMD virus (FMDV) are described, but serotype C is not circulating anymore, a burden unseen anywhere in the world. The enormous genetic diversity of FMDV is favored by an error-prone RNA-dependent RNA polymerase, intra-typic and inter-typic recombination, as well as the quasi-species nature of the virus. This paper describes the epidemiological dynamics of foot-and-mouth disease in the Horn of Africa with regard to the serotypes and topotypes distribution of FMDV, the livestock production systems practiced, animal movement, the role of wildlife, and the epidemiological complexity of FMD. Within this review, outbreak investigation data and serological studies confirm the endemicity of the disease in the Horn of Africa. Multiple topotypes of FMDV are described in the literature as circulating in the region, with further evolution of virus diversity predicted. A large susceptible livestock population and the presence of wild ungulates are described as complicating the epidemiology of the disease. Further, the husbandry practices and legal and illegal trading of livestock and their products, coupled with poor biosecurity practices, are also reported to impact the spread of FMDV within and between countries in the region. The porosity of borders for pastoralist herders fuels the unregulated transboundary livestock trade. There are no systematic control strategies in the region except for sporadic vaccination with locally produced vaccines, while literature indicates that effective control measures should also consider virus diversity, livestock movements/biosecurity, transboundary trade, and the reduction of contact with wild, susceptible&nbsp;ungulates.</p

    Proof of concept for the reduction of classical swine fever infection in pigs by a novel viral polymerase inhibitor.

    No full text
    &lt;p&gt;5-[(4-bromophenyl)methyl]-2-phenyl-5H-imidazo[4,5-c]pyridine (BPIP) is a representative of a class of imidazopyridines with potent in vitro antiviral activity against pestiviruses including classical swine fever virus (CSFV). This study analysed whether the lead compound, BPIP, was able to reduce virus replication in infected piglets. The compound, administered in feed, was readily bioavailable and was well tolerated. Eight specific-pathogen-free pigs received a daily dose of 75 mg kg(-1) (mixed in feed) for a period of 15 consecutive days, starting 1 day before infection with the CSFV field isolate Wingene. BPIP-treated pigs developed a short, transient viraemia (one animal remained negative) and leukopenia (three animals did not develop leukopenia). Virus titres at peak viraemia (7 days post-infection) were markedly lower (approximately 1000-fold) than in untreated animals (P=0.00005) and the viral genome load in blood was also significantly lower (P&lt;or=0.001) in drug-treated animals than in untreated animals over the entire experiment. At the end of the experiment (day 33), no infectious virus was detectable in the tonsils of BPIP-treated animals, although low levels of viral RNA were detected. The inability to isolate infectious virus from the tonsils indicates that the risk of a persistent CSFV infection is negligible. Further optimization of the antiviral potency and bioavailability of this lead compound may result in molecules completely suppressing virus replication. A potent antiviral could potentially be used as a primary control measure against virus spread in case of an outbreak, in addition to present countermeasures. This study provides the first proof of concept for the prophylaxis/treatment of CSFV infection in pigs.&lt;/p&gt;</p
    • …
    corecore