6,707 research outputs found

    Advanced turboprop noise prediction: Development of a code at NASA Langley based on recent theoretical results

    Get PDF
    The development of a high speed propeller noise prediction code at Langley Research Center is described. The code utilizes two recent acoustic formulations in the time domain for subsonic and supersonic sources. The structure and capabilities of the code are discussed. Grid size study for accuracy and speed of execution on a computer is also presented. The code is tested against an earlier Langley code. Considerable increase in accuracy and speed of execution are observed. Some examples of noise prediction of a high speed propeller for which acoustic test data are available are given. A brisk derivation of formulations used is given in an appendix

    Effects of LatticeQCD EoS and Continuous Emission on Some ObseErvables

    Full text link
    Effects of lattice-QCD-inspired equations of state and continuous emission on some observables are discussed, by solving a 3D hydrodynamics. The particle multiplicity as well as v2 are found to increase in the mid-rapidity. We also discuss the effects of the initial-condition fluctuations.Comment: 6 pages, 10 figures, prepared for Workshop on Particle Correlations and Fentoscopy, Kromeriz (Czech Republic), Aug. 15-17,200

    TLR3 engagement induces IRF-3-dependent apoptosis in androgen-sensitive prostate cancer cells and inhibits tumour growth in vivo

    Get PDF
    Toll-like receptors (TLRs) are a family of highly conserved transmembrane proteins expressed in epithelial and immune cells that recognize pathogen associated molecular patterns. Besides their role in immune response against infections, numerous studies have shown an important role of different TLRs in cancer, indicating these receptors as potential targets for cancer therapy. We previously demonstrated that the activation of TLR3 by the synthetic double-stranded RNA analogue poly I:C induces apoptosis of androgen-sensitive prostate cancer (PCa) LNCaP cells and, much less efficiently, of the more aggressive PC3 cell line. Therefore, in this study we selected LNCaP cells to investigate the mechanism of TLR3-mediated apoptosis and the in vivo efficacy of poly I:C-based therapy. We show that interferon regulatory factor-3 (IRF-3) signalling plays an essential role in TLR3-mediated apoptosis in LNCaP cells through the activation of the intrinsic and extrinsic apoptotic pathways. Interestingly, hardly any apoptosis was induced by poly I:C in normal prostate epithelial cells RWPE-1. We also demonstrate for the first time the direct anticancer effect of poly I:C as a single therapeutic agent in a well-established human androgen-sensitive PCa xenograft model, by showing that tumour growth is highly impaired in poly I:C-treated immunodeficient mice. Immunohistochemical analysis of PCa xenografts highlights the antitumour role of poly I:C in vivo both on cancer cells and, indirectly, on endothelial cells. Notably, we show the presence of TLR3 and IRF-3 in both human normal and PCa clinical samples, potentially envisaging poly I:C-based therapy for PCa

    FOPI/FOPID Tuning Rule Based on a Fractional Order Model for the Process

    Get PDF
    This paper deals with the design of a control system based on fractional order models and fractional order proportional-integral-derivative (FOPID) controllers and fractional-order proportional-integral (FOPI) controllers. The controller design takes into account the trade-off between robustness and performance as well as the trade-off between the load disturbance rejection and set-point tracking tasks. The fractional order process model is able to represent an extensive range of dynamics, including over-damped and oscillatory behaviors and this simplifies the process modelling. The tuning of the FOPID and FOPI controllers is achieved by using an optimization, as a first step, and in a second step, several fitting functions were used to capture the behavior of the optimal parameters of the controllers. In this way, a new set of tuning rules called FOMCoRoT (Fractional Order Model and Controllers Robust Tuning) is obtained for both FOPID and FOPI controllers. Simulation examples show the effectiveness of the proposed control strategy based on fractional calculus

    Quantum corrections for pion correlations involving resonance decays

    Full text link
    A method is presented to include quantum corrections into the calculation of two-pion correlations for the case where particles originate from resonance decays. The technique uses classical information regarding the space-time points at which resonances are created. By evaluating a simple thermal model, the method is compared to semiclassical techniques that assume exponential decaying resonances moving along classical trajectories. Significant improvements are noted when the resonance widths are broad as compared to the temperature.Comment: 9 pages, 4 figure

    On the Use of FOPID Controllers for Maintenance Phase of General Anesthesia

    Get PDF
    This paper investigates the performance achievable with a fractional-order PID regulator controlling the Depth of Hypnosis (measured via the Bispectral Index Scale) through the administration of propofol during the maintenance phase of total intravenous anesthesia. In particular, two different methodologies were applied to tune the controller: in the first case, genetic algorithms (GAs) were used to minimize the integrated absolute error, while in the second case, the isodamping approach-a method that targets phase margin invariance with respect to the process dc gain-was employed. In both cases, the performance was extensively analyzed and compared with that of a standard PID controller by simulating multiple patients through a Monte Carlo method. The results demonstrate that a fractional-order PID controller can be effectively used to control the Depth of Hypnosis, but the improvement with respect to a standard PID controller is marginal

    A gain-scheduled PID controller for propofol dosing in anesthesia

    Get PDF
    6siA gain-scheduled proportional-integral-derivative controller is proposed for the closed-loop dosing of propofol in anesthesia (with the bispectral index as a controlled variable). In particular, it is shown that a different tuning of the parameters should be used during the infusion and maintenance phases. Further, the role of the noise filter is investigated.nonenonePadula, F.; Ionescu, C.; Latronico, N.; Paltenghi, M.; Visioli, A.; Vivacqua, G.Padula, Fabrizio; Ionescu, C.; Latronico, Nicola; Paltenghi, M.; Visioli, Antonio; Vivacqua, Giuli

    A Preliminary Analysis of Anthropogenic and Natural Impacts on a Volcanic Lake Ecosystem in Southern Italy by UAV-Based Monitoring

    Get PDF
    Lakes play an important role in providing various ecosystem services. However, stressors such as climate change, land use, or land-cover change threaten the ecological functions of lakes. National and international legislations address these threats and establish consistent, long-term monitoring schemes. Remote sensing techniques based on the use of Unmanned Aerial Vehicles (UAV) have recently been demonstrated to provide accurate and low-cost spatio-temporal views for the assessment of the ecological status of aquatic ecosystems and the identification of areas at risk of contamination. Few studies have been carried out so far on the employment of these tools in the monitoring of lakes. Therefore, high-resolution UAV surveys were used to analyse and evaluate natural and anthropogenic impacts on the habitat status of a volcanic lake in a protected area. Five UAV flights took place during a year-long cycle (November 2020 to November 2021) in a volcanic lake located in southern Italy. For each flight performance, an orthomosaic of georeferenced RGB images was obtained, and the different features of interest were monitored and quantified using automated processing in a GIS environment. The UAV images made it possible not only to estimate the flooded shores but also to detect the impact of human-made structures and infrastructures on the lagoon environment. It has been possible to observe how the rapid changes in lake-water level have led to the submersion of about 90.000 m(2) of terrain in winter, causing the fragmentation and degradation of habitats, while the connectivity of the natural ecosystem has been threatened by the presence of the road around the lake. The proposed methodology is rather simple and easily replicable by decision makers and local administrators and can be useful for choosing the best restoration interventions

    Proteome analysis of multidrug-resistant, breast cancer-derived microparticles

    Full text link
    © 2014 Deep Pokharel et al. Cancer multidrug resistance (MDR) occurswhen cancer cells evade the cytotoxic actions of chemotherapeutics through the active efflux of drugs from within the cells. Our group have previously demonstrated that multidrug-resistant breast cancer cells spontaneously shed microparticles (MPs) and that these MPs can transfer resistance to drug-responsive cells and confer MDR on those cells in as little as 4 h. Furthermore, we also showed that, unlike MPs derived from leukaemia cells, breast cancer-derived MPs display a tissue selectivity in the transfer of P-glycoprotein (P-gp), transferring the resistance protein only to malignant breast cells. This study aims to define the proteome of breast cancer-derived MPs in order to understand the differences in protein profiles between those shed from drug-resistant versus drug-sensitive breast cancer cells. In doing so, we detail the protein cargo required for the intercellular transfer of MDR to drug-sensitive recipient cells and the factors governing the transfer selectivity to malignant breast cells. We describe the first proteomic analysis of MPs derived from human breast cancer cells using SDS PAGE and liquid chromatography-tandem mass spectrometry (LC/MS/MS), in which we identify 120 unique proteins found only in drug-resistant, breast cancer-derived MPs. Our results demonstrate that the MP-mediated transfer of P-gp to recipient cells occurs alongside CD44; the Ezrin, Radixin and Moesin protein family (ERM); and cytoskeleton motor proteins within the MP cargo
    corecore