653 research outputs found

    Coriolis effects on nonlinear oscillations of rotating cylinders and rings

    Get PDF
    The effects which moderately large deflections have on the frequency spectrum of rotating rings and cylinders are considered. To develop the requisite solution, a variationally constrained version of the Lindstedt-Poincare procedure is employed. Based on the solution developed, in addition to considering the effects of displacement induced nonlinearity, the role of Coriolis forces is also given special consideration

    Thermomechanically induced pre- and postbuckling of general structure

    Get PDF
    An algorithmic solution strategy which enables handling the positive/indefinite stiffness characteristics associated with the pre and postbuckling of structures subject to complex thermomechanical loading fields was developed. The flexibility of the procedure is such that it can be applied to both finite difference and element type simulations. Due to the generality of the algorithmic approach developed, both kinematic and thermal/mechanical type material nonlinearity including inelastic effects can be treated. This includes the possibility of handling completely general thermomechanical boundary conditions. To demonstrate the scheme, the results of several benchmark problems are presented

    Hierarchical Poly Tree Configurations for the Solution of Dynamically Refined Finte Element Models

    Get PDF
    This paper demonstrates how a multilevel substructuring technique, called the Hierarchical Poly Tree (HPT), can be used to integrate a localized mesh refinement into the original finite element model more efficiently. The optimal HPT configurations for solving isoparametrically square h-, p-, and hp-extensions on single and multiprocessor computers is derived. In addition, the reduced number of stiffness matrix elements that must be stored when employing this type of solution strategy is quantified. Moreover, the HPT inherently provides localize 'error-trapping' and a logical, efficient means with which to isolate physically anomalous and analytically singular behavior

    Finite element for rotor/stator interactive forces in general engine dynamic simulation. Part 1: Development of bearing damper element

    Get PDF
    A general purpose squeeze-film damper interactive force element was developed, coded into a software package (module) and debugged. This software package was applied to nonliner dynamic analyses of some simple rotor systems. Results for pressure distributions show that the long bearing (end sealed) is a stronger bearing as compared to the short bearing as expected. Results of the nonlinear dynamic analysis, using a four degree of freedom simulation model, showed that the orbit of the rotating shaft increases nonlinearity to fill the bearing clearance as the unbalanced weight increases

    Self-adaptive predictor-corrector algorithm for static nonlinear structural analysis

    Get PDF
    A multiphase selfadaptive predictor corrector type algorithm was developed. This algorithm enables the solution of highly nonlinear structural responses including kinematic, kinetic and material effects as well as pro/post buckling behavior. The strategy involves three main phases: (1) the use of a warpable hyperelliptic constraint surface which serves to upperbound dependent iterate excursions during successive incremental Newton Ramphson (INR) type iterations; (20 uses an energy constraint to scale the generation of successive iterates so as to maintain the appropriate form of local convergence behavior; (3) the use of quality of convergence checks which enable various self adaptive modifications of the algorithmic structure when necessary. The restructuring is achieved by tightening various conditioning parameters as well as switch to different algorithmic levels to improve the convergence process. The capabilities of the procedure to handle various types of static nonlinear structural behavior are illustrated

    Engine dynamic analysis with general nonlinear finite element codes. Part 2: Bearing element implementation overall numerical characteristics and benchmaking

    Get PDF
    Finite element codes are used in modelling rotor-bearing-stator structure common to the turbine industry. Engine dynamic simulation is used by developing strategies which enable the use of available finite element codes. benchmarking the elements developed are benchmarked by incorporation into a general purpose code (ADINA); the numerical characteristics of finite element type rotor-bearing-stator simulations are evaluated through the use of various types of explicit/implicit numerical integration operators. Improving the overall numerical efficiency of the procedure is improved

    Mercury's Internal Structure

    Get PDF
    We describe the current state of knowledge about Mercury's interior structure. We review the available observational constraints, including mass, size, density, gravity field, spin state, composition, and tidal response. These data enable the construction of models that represent the distribution of mass inside Mercury. In particular, we infer radial profiles of the pressure, density, and gravity in the core, mantle, and crust. We also examine Mercury's rotational dynamics and the influence of an inner core on the spin state and the determination of the moment of inertia. Finally, we discuss the wide-ranging implications of Mercury's internal structure on its thermal evolution, surface geology, capture in a unique spin-orbit resonance, and magnetic field generation.Comment: 36 pages, 11 figures, in press, to appear in "Mercury - The View after MESSENGER", S. C. Solomon, B. J. Anderson, L. R. Nittler (editors), Cambridge University Pres

    Thermomechanical behavior of plasma-sprayed ZrO2-Y2O3 coatings influenced by plasticity, creep and oxidation

    Get PDF
    Thermocycling of ceramic-coated turbomachine components produces high thermomechanical stresses that are mitigated by plasticity and creep but aggravated by oxidation, with residual stresses exacerbated by all three. These residual stresses, coupled with the thermocyclic loading, lead to high compressive stresses that cause the coating to spall. A ceramic-coated gas path seal is modeled with consideration given to creep, plasticity, and oxidation. The resulting stresses and possible failure modes are discussed

    Simulation of fractionally damped mechanical systems by means of a Newmark-diffusive scheme

    Get PDF
    A Newmark-diffusive scheme is presented for the time-domain solution of dynamic systems containing fractional derivatives. This scheme combines a classical Newmark time-integration method used to solve second-order mechanical systems (obtained for example after finite element discretization), with a diffusive representation based on the transformation of the fractional operator into a diagonal system of linear differential equations, which can be seen as internal memory variables. The focus is given on the algorithm implementation into a finite element framework, the strategies for choosing diffusive parameters, and applications to beam structures with a fractional Zener model

    Sistemas Agroflorestais para a Mesorregião Sudoeste de Mato Grosso do Sul: um estudo propositivo.

    Get PDF
    bitstream/item/66228/1/31298.pdfOrganizado por: Alberto Feiden, Milton Parron Padovan, Adalgiza Inês Campolim, Aurélio Vinícius Borsato, Ivo de Sá Motta, João Batista Catto, Tércio Jacques Fehlauer
    corecore