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Abstract

This paper demonstrates how a multilevel substructuring technique, called
the Hierarchical Poly Tree (HPT), can be used to integrate a localized mesh
refinement into the original finite element model more efficiently. The op-
timal HPT configurations for solving isoparametrically square h-, p-, and
hp-extensions on single and multiprocessor computers is derived. In addi-
tion, the reduced number of stiffness matrix elements that must be stored
when employing this type of solution strategy is quantified. Moreover, the
HPT inherently provides localized “error-trapping” and a logical, efficient
means with which to isolate physically anomalous and analytically singular
behavior.






1 INTRODUCTION

With the advent of affordalle computer resources, engineers have come
to rely upon numerical techniques to simulate various types of physical
phenomena. These include structural mechanics, fluid dynamics, electro-
magnetic fields, and heat transfer to name a few. The most widely used
methods for numerically approximating this behavior are generalized Finite
Element (FE) and Finite Difference (FD) formulations.

Due to the limited approximation/interpolation capabilities of the afore-
mentioned numerical techniques, the results of an analysis depend heavily
upon the proper discretization of the system in question. Oftentimes, as
the solution process proceeds, various localized phenomena may occur that
would require a refinement of the model to ensure the reliability of the
solution. Such model refinements are triggered by the occurrence of;

1. Shock wave formation,

2. Cracking,

3. Material nonlinearity,

4. Geometric nonlinearity,

5. Boundary layer formation, and

6. Varying boundary conditions, etc.

To date, many mesh refinement schemes have been developed that ad-
dress this issue. These schemes are typically classified as r-, h-, or p-
extensions; i.e.,

r-extension:  Is a node relocation scheme which adapts the
spatial coordinates of the nodes toward the
optimal location. The number of nodes and

elements are fixed when using this approach;



h-extension:  Is a scheme wherein elements containing a large
amount of error are refined into much smaller elements;
p-extension:  Is a method that employs higher order polynomials
for the shape functions of elements containing

a large amount of finite element approximation error.

These schemes have been successfully used, both individually and con-
comitantly, to solve PDEs of the elliptical, parabolic, and hyperbolic types
in one and two dimensions[1-3]. Due to the large expanse of literature avail-
able that pertains to this subject it would be impractical, if not impossible,
to reference all of the authors that have made contributions related to the
development of these techniques. In light of this, we will simply refer the
reader to the cumulative works of I. Babuska and B.A. Szabé as well as the
publications compiled in [4].

Regardless of whether an r-, h-, and/or p-extension is employed, several
iterations of the solution process are required before satisfactory results can
be attained. It directly follows that the implementation of these techniques
is somewhat restrictive, especially for large FE systems, because of the
large computational costs involved. In this context, we will illustrate how
the Hierarchical Poly Tree (HPT)[5,6] solution strategy can be incorpo-
rated into the aforementioned mesh refinement routines so as to yield more
efficient computational algorithms for both sequential and multiprocessor
type machines. In addition, an HPT inherently provides;

1. The minimization of in-core and out-of-core memory requirements;
2. A logical/efficient means of “isolating” localized mesh adaptations;

3. Localized “error-trapping”, i.e., the influence of localized modelling
errors are essentially confined to their “branch” of the Tree;

4. An orderly multilevel organization of the model topology wherein
interpolative reduction schemes can be employed between levels for
simulations involving a hierarchy of fine to very coarse scales in its

definition[5,6 ].
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In this context, the forthcoming chapters will:

1. Provide the motivation/philosophy of utilizing the HPT for solving
dynamically refined FE discretizations,

2. Develop the optimal multilevel HPT for the solution of locally refined
regions in a sequential type computing environment,

3. Illustrate the potential advantages of using the HPT solution strategy
in a multiprocessor environment.

2 HPT PHILOSOPHY

The Hierarchical-Poly Tree (HPT) is a multilevel substructuring technique
that has been shown to yield significant speed enhancements with reqards
to the solution of the resulting system of simultaneous algebraic equations
that arise from FE formulations. Moreover, when implemented in a multi-
processor environment, the HPT has the potential of solving the numerical
problem with superlinear speed enhancements, i.e. the resultant speedup is
greater than the number of processors used in parallel. Given that the use
of the aforementioned dynamic mesh refinement schemes typically necessi-
tates the solution of the system equations several times before an adequate
solution is attained, the incorporation of the HPT solution strategy into
their respective algorithms would prove to be very advantageous. This is
especially true when addressing large FE systems.

The development of the HPT solution strategy evolved from the recog-
nition that the computational effort associated with the solution of

[K]{Y} ={F} (2.1)
can be approximated as {7],
C, = %NE [Ng(Ng + 1)] + 2 Ng Np (2.2)
where
C, — total number of arithmetic operations necessary

to solve Equation (2.1)



Ng — number of equations/unknowns
Np — mean-half-bandwidth of /)

1
5 Ng {Np(Np + 1)] — number of arithmetic operations required

to perform an (L] [D] [L]T factorization of (K]
via a direct, skylined solver such as the one
employed in ADINA (7,8]

2 Ng Ng — number of arithmetic operations needed to
factorize {F} and perform the subsequent

back substitution step for calculating {Y'}.

Furthermore, since [} is symmetric, the mean-half-bandwidth is defined
to be

Np = A (2.3)
«
where
a = .Nf
B — number of stiffness matrix elements stored in the

upper triangular of [K] via a skylined method.

Substituting (2.3) into (2.2) yields

Qg
18,
2 o, (2.4)

Thus, equation (2.4) is an approximation of the computational effort asso-
ciated with the solution of (2.1) in terms of the number of equations and
stifiness matrix elements.

Now, consider the process of hierarchical substructuring as shown in
Figure 2.1. Note that the 1# level, or “trunk” of the Hierarchical Poly
Tree, represents the final assembled composite version of the FE model.
The Lt level, or outermost “branches” of the Tree, represents the sub-
structures comprised of fundamental finite elements, e.g. 4-node quadrilat-
eral elements. The intermediate levels represent the various assemblages

4



of the hierarchy that are used to traverse {rom one extreme to the other.
Referring to Figure 2.2, the algorithmic steps associated with the grafting
of “branch” substructures to their “root” substructure is as follows;

1. Forward Phase

(a) Assembly of the condensed stiffness matrices and force vectors
from the preceeding level,

(b) Partitioning of the local stiffuess matrix into its internal and
external components. Note that this can be accomplished by
simply employing the proper node numbering locally,

(c) Forward elimination/condensation of the local stiffness madtrix,
(d) Condensation of the local force vector,

(¢) Transfer of the condensed stiffness matrix and force vector to
succeeding levels, i.e. from each branch to its root processor;

2. Backward Phase

(a) Backward transfer of the results calculated at the root substruc-
ture to its branch substructures,

(b) Adjustment of the local internal “load” vector,
(c) Condensation of the locally adjusted internal “load” vector,

(d) Back substitution, i.e. calculation of the independent variables
within the external periphery of the branch substructures.

In terms of Figures 2.1 and 2.2, it follows that each root-branch system
must undergo the steps noted above in the Forward and Backward phases
of the solution process. For multilevel trees, each branch processor is itself
a root for subsequent sets of branches.

From a sequential point of view, the HPT approach to the problem is
to optimize

L s() 1
Crs = Y {EI'NE [Ne({Ns + 1)) + (;Ng)(}Ng) + 2(i'!'\"z-:,)(;’NB,)1
I=1

s=1

(2.5)



where the superscript s and subscript | denote the s substructure on the

2 level, and

Crs — total computational effort arising from solving

every level and substructure in a sequential manner,

{Ng, — number of internal equations,
{Np, — mean-half-bandwidth of the [{ K;] partition,
L — total number of levels,
S(l) — number of substructures on the It level.
1 s s s : s : :
~*NgINg(jNg + 1)] — approximate number of arithmetic operations
51 ] !
required to condense [} K]
({Ng)(;Ng) — approximate number of arithmetic operations
( needed to condense {} F'}
2({Ng,) ({Ng,) — number of arithmetic operations needed to

factorize {{ F;} and perform the subsequent

back substitution step for calculating {{Y7},

When operating in a multiprocessor environment the various substruc-
tures on a given level can be solved/condensed concurrently. As a result,
the HPT is configured to minimize the following

L
Cre = 3 {5iNe[iNs (N + 1] + (Ne) (iNa) + 2(:VE) (iVa,)]
=1 .

max

(2.6)

where the subscript maz denotes the substructure on the I** level requiring
the maximum computational effort. By employing the definition of the
mean-half-bandwidth, Equations (2.5) and (2.6) can be recast as
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Crp = Y [%, (:—g + 3) + Zfﬂ,]

=1

~—

max

L1 (38)?
- P9

8
=1 IO‘
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The optimal multilevel decomposition of a finite element discretization
into a hierarchy of substructures can be derived by employing various func-
tions for # and «[5,6]. A number of these functions for two-dimensional
substructuring “primitives” have been generated and are compiled in the
Appendix. Note that these functions are isoparametric in nature. For
example, the 'E models shown in Figures 2.3 and 2.4, discounting the ap-
propriate boundary conditions and assuming they share the same number
of DOF per node, yield the same § and a. The “mechanics” of obtaining
an optimal HPT will be shown more rigorously in the next chapter.

In terms of the r-extension, the initial HPT description of the model
would be “fixed”. This is because the r-extension method does not alter
the fundamental “connectivities” of the various finite elements. In other
words, even though the values stored in [K] will change, 8 and o remain
constant. On the other hand, the HPT must be able to adapt “on-the-
fly” when employing the h-, p-, and/or hp-extensions. In this context, the
following chapter will illustrate the flexibility of the HPT to self adapt to
the demands of these type of refinements.

3 SEQUENTIAL HPT FORMULATION

Ideally, the initial global FE discretization would be decomposed into a
hierarchy of substructures that have heen configured according to the HPT
optimality criteria. Thereafter, as mesh refinement is initiated, the HPT
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would sprout multilevel root-branch systems that are optimized in the local
sense. This is illustrated in Figure 3.1. However, regardless of whether a
global HPT has been constructed or not, the onset of localized mesh re-
finement is best handled by an HPT approach. Therefore, the forthcoming
development will illustrate how localized multilevel HPT’s should be con-
structed for the sequential solution of regions that have been dynamically
refined by way of h-, p-, and hp-extensions. In addition, to better con-
vey the advantages of using this type of solution strategy, we will restrict
the discussion to isoparametrically square regions comprised of four node
quadrilateral elements.

Upon completion of the aforementioned, we will conclude the chapter
with a comparison of the computational efforts associated with the various
mesh refinement techniques. As will be seen, the differences in the number
of arithmetic operations required to statically condense out the internal
variables of the different methods of enhanced mesh discretization can be
substantial.

3.1 SEQUENTIAL HPT FOR h-EXTENSIONS

When performing a model refinement by the h-extension method, the
discretization within an element/region is increased by using smaller ele-
ments (see Figure 3.2). Typically, the computational steps associated with
integrating the mesh refinement into the global formulation is as follows;

1. Static condensation is employed to remove the internal DOF,

2. The proper interpolation constraints are implemented so as to main-
tain element to element compatibility yielding the final representation
of the refined zone in terms of the original DOF about the periphery,

3. The new element/region stiffuess is assembled into the global {formu-
lation.

This sequence of steps is depicted in Figure 3.3. Now. assuming the num-
bering scheme shown in Figure A.1, 3, and a, have the following form,
b
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N
TR

{Gp(n])3 —(11p - 1) (m)* + Gpn]]
~ 3(p)* (n,)? (3.1

ap = p(ny)? (3.2)

where

p — node density, i.e. DOF per node,
n; — nodal dimension of the problem,i.e. the number
of nodes along an edge.

Note that in obtaining (3.1) and (3.2) from the substructure primitive in
Figure A.1, we have set the nodal dimensions m and n equal to each other.
Thus, the computational effort associated with statically condensing out
the internal variables is

Ch ~ 5 () (m) (3.3)

To solve this problem with a two level, sequential HPT, the solution
process is as follows;

1.

The region of refinement is decomposed into an arbitrary number of
equivalent substructures as depicted in Figure 3.4,

The individual substructures are condensed into their external DOF,

The condensed substructures are subsequently assembled to yield the
composite structure shown in Figure 3.5,

. The composite assembly is then statically condensed into the external

DOF defining the periphery of the refined element/region,

The proper interpolation constraints are implemented so as to main-
tain element to element compatibility, yielding the final representa-
tion of the refined zone in terms of the original DOF.

The new element /region stiffness is assembled info the global formu-
lation (see Figure 3.6).



Notice that the only difference between the HPT approach and the standard
technique is in the way the internal variables are condensed out of the
problem.

Recalling Equation (2.7), the computational effort of condensing out
the internal variables of the refined element/region by a two level HPT in
a sequential manner can be written as

1 (13)? (K2)? 1
wCrs = 2 (If + Z (2/3) ] (3.4)
la

where (I(;)? is the total number of 224 level substructures. Furthermore,
the functionalities of ;o and ;3 for K, > 3 are, from Figure A.2,

1 = {2[(K:)° + Ki)ny — [3(K3)* + 2K, — 1)} p (3.5)

18 = S{14UK) + 7(K2)? - 5Kalp (na)’

— {[37(K,)® + 13(K,)? — 183)p — [2(K3) + 2K,]}n,
+ {[24(]\'2)3 + 5(1(2)2 - 141{2 + l]p - (3(1{2)2 + 211-2 — 1]}}

(3.6)

The computational effort associated with the second level substructures is
approximated by using the functions obtained from Figure A.1, i.e.

2 = p(na) 2
; 1, (]
B = g[ﬁp(nz)s—(llp - 1)(n2)2+6pn2] }’ s € [1,(X3)?
(3.7)
wlere
n, = 2 +I‘?" -1 (3.8)
2

Due to the construct of the decomposition, all of the second level sub-
structures will exhibit the same computational effort. Equation (3.4) can
then be rewritten as

1 (;8)° n (15)? (:8)°

2 ja 2 2

(3.9)



Note that, for convenience, we have discarded the use of the superscript s.
Assuming n, > Ik, the problem dimension of the second level substruc-

tures is, from (3.8),

n, ~ —L (3.10)
IS,

Incorporating this assumption and (3.10) into (3.5) - (3.7) yields

1~ 2(1{2 + 1)pn1 (3.11)
7p° . )
1/3 ~ 7(21&2 + 1)(1?1) (3-12)
pn )’
20 (I5,)? (3.13)
3p% (m)?
2 () (3.14)
Employing (3.11) - (3.14) in (3.9) and requiring that
d(»Crs)
—_ o2 = 3.15
d(K,) 0 ( )
yields
36 1/3
K, ~ [E nlJ i Kg >3 (3.16)

Thus, the proper number of second level substructures needed to minimize
»Crs is given by (3.16). The computational speedup afforded by this ap-
proach is illustrated by forming the ratio

Ch
nCrs

Rh/TS = (3.17)
Recall that ,Crs and C) are the approximate number of arithmetic op-
erations required to condense out the internal variables of the refined el-
ement /region with and without substructuring respectively. Ulilizing the
result of (3.16), it can be shown that

1

Ryjrs = %— ~ 0.31 (n,)*? ‘N, >3 (3.18)
RU'TS
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Focussing on the special case of ', = 2, the functions for ;a and 43 are

(from Figure A.3),

1 = (6n, — 9)p

3.19
~ 6pn.1 ( )
B = L165p(n)” - (1820 — 12)m, + (1235 - 18)

65
—~ _4_p2 (n']_)z (3‘20)
and
n _ 251 + 1
. = 5
. m (3.21)
2

It is easily verified that the speedup attainable from this decomposition of
the problem is

Ch 864 ny R
R = ~ s K, = 2 3.22
MIS T \Crs (4225 + 216n;) (3.22)
Moreover,
lim Ryps =4 ; K, = 2 (3.23)

. ny—oo
Figure 3.7 graphically illustrates the potential speedups that can be ob-
tained for a sequentially solved two level HPT with K, = 2,3, and 4 for
h-extended mesh refinements where n, < 60.

The preceeding development has been based upon the assumption that
the problem size, n,, is large. At this juncture it is appropriate to ask the
question, 'How large must n; be before the benefits of the HPT are real-
ized?’ To address this question, a number of numerical experiments were
performed. The speedups obtained from this empirical study are depicted
in Figures 3.8 - 3.11 and tabulated in Tables (3.1) - (3.3). It can be clearly
seen that as the problem size increases, the speedups are as predicted by
the foregoing development. In addition, the following observations can be
made:

12



1. Small problems are dominated by the computational overhead. How-
ever, for larger problems, this effect becomes negligible;

2. Decomposing the problem into four substructures (I = 2)is more
advantageous than nine (&, = 3) for small n; because less overhead
1s accrued;

3. As the DOF per node increases, i.e. p, the results are improved for
small values of n;. This occurs because, for a given problem size
ny, the overhead becomes less influential as a result of the actual
computational effort increasing by an order of O(p®).

4. For larger problems, the second level substructures themselves be-
come large enough to warrant another level of substructuring.

It was also found, as evidenced by Tables (3.1) - (3.3), that the system of
equations resulting from this type of mesh refinement can be condensed/
solved more efficiently by utilizing a multilevel HPT with kK, = 2,le[2,L]
where the number of levels that should be employed is governed by

p(nr_1)® > 350 (3.24)

Equation (3.24) arises from the fact that whenever p(ny)? is greater than
350, another level of substructuring is justified so long as Ky ,; = 2. Thus,
to determine the approximate number of levels that should be used in terms
of p and ny, np_; can be cast as

o+ [ K -1

nr.1 =

/5 K
n
iy e (3.25)
s &
Requiring that K; = 2,1l ¢ (2, L],
Ny
nr_y ~ (2)(L—2) (326)
Substituting (3.26) into (3.24) yields
L< ;{ln[p(nl)z] - 3} (3.27)
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Before proceeding, it must be emphasized that the limiting number of
levels is based upon empirical data. That is, the computational overhead
incurred varies from one machine to the next and is the dominant factor in
determining the smallest problem size, p(n,;)?, that can benefit from this
type of solution strategy.

To estimate the performance of an L level HPT solved sequentially,
wherein It; = 2, l € [2,L], we can write

B | g GBY g GBY L ey WO

2 10 20 300 Lo

nCrs =

(3.28)
where, for | € [1,L — 1),
i@ = (6, — 9)p

~ Gpm (3.29)
ho= -—[65p(m)2 (182p — 12)my + (123p — 18)]
~ ﬁp (11,1)2 (3.30)
4
and
ny .
n -~ W:ﬁ ,l € [2,L] (3.31)
ra = p(ny)? (3.32)
B = El6p(ne)® — (11p — 1)(ne)’ + 6 pny)
~ 3p2(nL)3 (3-33)
Using (3.29) - (3.33), we can recast (3.28) as
, 4225 3 g ('nl)
»Crs = 192 p* (n1) g——“(z)(,_l)] + = P )T
_ 4225 K 1 9 ., (m)*
= 192 (n1)® [ (2)(L~2)] + 3P W (3.34)
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As before, the potential speedup is estimated by forming the ratio

Ch
wCrs

Ryrs =

= 432 (272D m, (3.35)

{4225 (2) -1 [(2)E-D) T 1] ¥ 432n,}

Equations (3.27) and (3.35) can be used in conjunction to determine the
appropriate number of levels and the concomitant speedup that can be
expected for a given h-extended refinement defined by p and n,. It is also
interesting to note that, for a given fixed value of L, the speedup for large
values of n; is
Jm Ryrs = (2)"5Y S K =2, L e [2,) (3.36)
Another important feature inherent to the HPT solutjon strategy is
the reduction of the memory needed to store the stiffness matrix elements.
However, even though the total storage requirements are reduced, the sub-
structures on the 224 through L' levels must store the partition of the
stifiness matrices containing the connectivities between the internal and
external D.O.F., i.e. [I{g], separately before it is altered by the conden-
sation process. This is because the internal load vector, {Ft}, of a branch
substructure must be adjusted by way of

{Fi}es, = {Fr} - [K15){Y¥5)} (3.37)

to reflect the influence of the external displacements, {YE}, calculated by
the root.

In this context, the number of stiffness matrix elements that must be
stored for an I* level substructure can be wrilten as

M, = .3 (3.38)
My = B+ s le|2.L] (3.39)
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where

M; — total number of stiffness matrix elements that
must be stored
18— number of stiffness matrix elements stored in
[X{] via a skylined technique
181 — number of stiffness matrix elements in the (K1 g
partition of [K]

When using the optimal IIPT configuration of K} = 2, [ € [2,L], the
functions for ;3 are defined by (3.30) and (3.33) while

2
Bre = %—[26(111)2 ~ 84n; + 50]

~ '1'2§p2(ﬂ[)2 il e [1,(L—1)] (3.40)

tBre = p?[2(nr)® - 8(ny)? + 10ny — 4]

~ 2p*(n)? (3.41)
Using (3.31), (3.40), and (3.41); (3.38) and (3.39) can be written as
M, ~ 6—4‘?p2(n,1)2 (3.42)
91 , (my)?
M, ~ 7{”2(—2)2(1_-1) e [2,(L-1)] (3.43)
()
M, ~ 5p2(~2)T—(L-1_) (3.44)

Then, for an L level HPT, the total storage needed for all the various
stiffiness matrices can be cast as

Mrs = My + (4) Mz + (16) My + -+ + (2)*"D AL (3.45)

16



From (3.42) - (3.44),

65 91 (1)

; —_ -T2 2 v o2 _ 2 2
WMrs = 4p(171) + 4/)(L 2)(m)* + 5p D (3.46)

Thus, the overall reduction in memory requirements afforded from the use
of an HPT solution strategy can be seen by ratioing , Mrs with §,, namely

M
Mgy = hﬂ:s
2 711 !’
[prz(nl)z + %TIPZ(L—Q)(M)’ + ?;)((L-d)]
3p*(n,)?
65 91(L — 2) 5 )
~ 12721 + 12"‘1 + 3(2)(L_)) y I‘[ - 2, l E [2’L]

(3.47)

Fixing the number of levels and letting n; become large, we see that

. 5 1 .
Jim My, = 32)ED s K= 2,1 € [2,L) (3.48)

Figure 3.12 graphically illustrates the reduced number of stifiness matrix
elements that must be stored when employing an HPT for h-extended mesh
refinements. As can be seen, an actual savings of memory can not be
realized until n, > 22. The fact that the memory requirements are increased
for smaller h-extensions is primarily attributable to the dual storage of the
[#1£] partition of the stiffness matrix.

The foregoing development has shown that the use of a multilevel sub-
structuring approach, i.e. the HPT, for solving locally refined mesh dis-
cretizations by h-extension has certain distinct advantages. First, the in-
ternal variables are statically condensed out of the refined element /region
much more efficiently and, secondly, substantial reductjons in the overall
memory requirements are achieved. In addition, although less quantifiable,
is the local “error trapping” provided by this technique. This is due to the
reduction of a given degree of freedoms skyline height resulting from the
substructured decomposition of the problem. In other words, the direct

17



influence of a finite element approximation error in a particular stiffness
matrix element is confined to the degrees of freedom within the reduced
skyline. The HPT also provides a logical and efficient means of “telescop-
ing” an h-extended mesh refinement into a physical anomaly or singularity.
This is done by grafting another localized HPT onto the previous one as
shown in Figure 3.13. In the section that follows, we will develop the ad-
vantages and quantifiable trends of using the HPT in a sequential manner
for p- and hp-extended mesh refinements.

3.2 SEQUENTIAL HPT FOR p- AND hp-EXTENSIONS

In the previous section it was shown that a locally h-extended mesh
discretization can be solved more efficiently by using the Hierarchi¢al Poly
Tree solution strategy. In this section we will show that the HPT is applica-
ble to p- and hp-extensions as well. As before, we will restrict the discussion
to isoparametrically square regions. Although the development will be sim-
ilar to the one presented for the h-extension technique, the approach will
be quite different. This is due to

1. The discretization within a given element is enhanced by using higher
ordered polynomial shape functions; and

2. The number of elements refined in this manner is independent of the
order of the polynomial chosen to improve their accuracy.

In this context, to maintain compatibility with the equations used in the
previous section, the independent variables defining this type of mesh re-
finement will be x and 1. The interpretation of these variables is as follows:

(k)* — is the total number of elements refined by
p-extension; and |
n — quantifies the order of the polynomial used within the
elements themselves by way of the number of nodes along
an edge.

With regards to the order of the polynomial used, the prevalent litera-

ture typically uses complete pt2 order polynomials {or triangular elements
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as defined by Pascal’s triangle[9]. Therefore, to be consistent, we will define
the p* order polynomial of a 4-node quadrilateral element as the conjunc-
tion of two complete p* order triangular elements as shown in Figure 3.14.

Furthermore, the variables 1 and p are related by
n=p+1 (3.49)

As was pointed out by Katz, Peano, and Rossow{10], the internal variables
arising from the increase in p are condensed out at the element level. Katz
et al. also showed that the order of the polynomial can be increased by
enforcing constraints on the higher order derivatives of the shape functions
as opposed to the use of extra spatial nodes. Regardless of which method is
used, if only C° continuity is required, the number of arithmetic operations
needed to statically condense out the internal DOF for an element refined
in this manner is

1
G o= {p*[(n)° +9(n)° + 30(n)* - 391(5)* + 921(n)* - 822y + 256

+0°[3(n)* + 30(n)° — 195(n)® + 312n — 132]
— p[10(17)* — 405 + 40]} (3.50)

It can also be shown that the number of stiffness matrix elements for the
previously defined ptt order 4-node quadrilateral element is

B = 2{((n)° + 6(n)* = 110 + 6]p + 29}y (3.51)

Equations (3.50) and (3.51) were derived for the numbering scheme given in
Figure A.4. Moreover, after condensation, the resulting form of the refined
element is shown in Figure 3.15. In addition, the order of the complete
polynomials, i.e. p, are usually restricted to values of 8 or less because of the
numerical error incurred while calculating the appropriate coeflicients(11].
It then follows that

n <9 (3.52)

Referring to Figure 3.16, an isoparametrically square region comprised
of (k)? elements refined by p-extension is integrated into the original, global
FE model by performing the following algorithmic steps:
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1. The internal DOF generated by the p-extension refinement are con-
densed out at the element level;

2. The (x)? refined elements are subsequently assembled;

3. Theinternal DOF associated with this assemblage are condensed into
the DOF about the periphery of the refined region;

4. The appropriate interpolation constraints that will maintain element
to element compatibility are applied; and

5. The refined region is assembled into the global FE model via the
original DOF about the periphery.

The number of arithmetic operations needed to perform steps 1) and 3)
can be approximated as

2
Chp = %% + (k) C, (3.53)
P
where, {rom (3.5) and (3.6),
ar, = {2[(x)* + k]n = [3(x)* + 2c = 1]}p (3.54)

Bro = E{114(x) + (<) — 5x]p ()]
— {[37(k)® + 13(x)* — 18k]p — [2(k)* + 2K}
+ {[24(x)® + 5(k)’ — 14 + 1)p — [3(x)* + 2x — 1]}}

(3.55)
Assuming & > n 2> 3 yields
ar, ~ p(x)*(2n - 3) (3.56)
P’
Brp ~ _2_(,{)3[14(1;)’—371”2-1] (3.57)

20



Substituting (3.56) and (3.57) into (3.53) gives the approximate computa-
tional effort entailed in performing a large scale p-extended mesh refine-
ment, that is \ )
14n* — 37 4 24)2
Chrp ~ %x.“( 1 (2:_’5 F e, (3.58)

Note that, due to the way it was formulated, (3.58) is also applicable to hp-
extensions. This is because it is written in terms of the number of elements
and the order of the polynomial enhancement within them, i.e. (x)? and
7 = (p + 1) respectively.

In the previous section it was shown that an optimal sequential solution
of an h-extended mesh refinement can be obtained from a HPT configured
such that I; = 2,1 € [2,L]. The forthcoming discussion will show that
the same is true when addressing p- and hp-extended mesh discretizations.
To set the stage for the generalized L level case, we will illustrate the
development of a simple two level HPT where iy = 2. Recalling (3.9) and
(3.50), the computational effort for a two level HPT can be written as

1687 (KB
wCrs = 5 1a + 2 e + (x)* Cy
2 2
_1_(1/3) + 2(2/3) + (K,)2 Cr’p (3.59)
2 i« 2
Rewriting (3.19) and (3.20),
1~ Gpny (3.60)
5~ Bty o

where, from Figure 3.17 and appealing to Equation (3.8),

n, = Kk{(n - 1)+ 1

(3.62)
~ Kk{n — 1)
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Substituting (3.62) into (3.60) and (3.61) gives

1@~ Gpr(n — 1) (3.63)
18~ 6jj'fipz(n)z(n - 1) (3.64)

Ouce again referring to Figure 3.17 and assuming that (k/2) > 3, we see
that the operative functions for ,a and ,3 are equivalent to (3.5) and (3.6)

[ (G I YE R |

Y

Applying the assumption that « is large and much greater than 7 yields

2
20~ p (g) (27 — 3) (3.67)
AN 2 (3.68)
8~ 2 (2) 14y - 379 + 2 -

Utilizing (3.63),(3.64),(3.67), and (3.68); (3.59) can be recast as

4225 , ., s . P2, 4[14(n)? — 3Ty + 24)2 .
—p (k ~1 ==« )*
192 7 (R (=17 + Z5(x) 3] + (1) C,

(3.69)

wwCrs
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The resulting speedup obtained from such a decomposition is

'y
RIIP/TS = ’p

flpC‘TS

3 2 - 2
¢ )4 140’3701 24) N2
. (g (ey e 4 (e, )
3 2_37% 2 .
{Ep(np(n -1 + %(K)‘*%tm + (x)2C,)

(3.70)

Speedups obtained for isoparametrically square regions refined by a p-
extension and decomposed into a two level HPT is shown in Figures 3.18a
and 3.18b. Upon inspection of these graphs the following observations can
be made

1. The speedup aflorded by an HPT increases as the problem size in-
creases; and

2. For a given «, speedup may actually improve for a higher order of p.

Lastly, before expounding the generalized sequential L level HPT, it can
be shown that, for a fixed value of 1, the asymptotic speedup is

lim th/:rs = 4 ;I(z = 2 (3-71)

K—QO

Note that (3.71) correlates with the result of (3.23).
Moving on to the L level HPT, the recursion formula of (3.31) can be
written in terms of « and 7, namely

m

(2)1 - 1)

n

K(np—1)

(2)0-1i (3.72)
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Substituling (3.72) into (3.29) and (3.30) yields, for I € [1,(L — 1)),

(-1
o~ Gpt¥%%6:7% (3.73)

65 ,(x)*(n—1)°

1(1/3)2 4225 3(1{)3(71_1)3
510‘ - 192p (2)3(1—1) (3.75)

Finally, appealing to (3.67) and (3.68),

)2
La ~ p(—2§—%%_—1)(21]—3) (3.76)

13

B~ %6%[14(1;)2——37174-24] (3.77)

E(Lﬂ)z N p_3- (/»;,)4 [14(1])2 — 377] + 24}2 (3.78)
2 e 8 (2)4L-1) (27— 3)

Employing (3.50), (3.75), and (3.78); the number of arithmetic operations
required to solve an L level HPT sequentially in terms of x and 7 is

ZL: )2(1 1)(/3) + (K)ch

wlrs = o
N %3_ (zgﬁ‘ 1)[14(77):2; 3:7;7)+ 247 4 e,
= TP - 1) [2—(-—2)713:5]
+ %3(2():3.4-1»“4(1’)(227; Té’f G
(3.79)
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Ratioing (3.58) with (3.79) gives the approximate speedup that can be
expected from employing an L level HPT. Moreover, fixing L and 7, the
speedup of a localized p- or hp-extended mesh refinement where x is large
can be shown to be

Kll_&lo th/TS = (2)2(L_1) ' I([ = 2, [ € [2L} (3.80)
The results of (3.36) and (3.80) indicate that asymptotically large mesh
discretization refinements that are isoparametrically square, regardless of
whether its an h-, p-, or hp-extension: can be solved with similar computa-
tional improvements when using multilevel HPT decompositions.

Before the relative storage requirements of the standard and HPT so-
lutions can be quantified for p- and/or hp-extensions, some subtle issues
pertaining to this type of mesh refinement must be addressed. For exam-
ple, if the internal DOF within the p-extended elements themselves are to
be calculated, then each individual element stiffness matrix must be saved
for the back substitution phase of the solution. In addition, the elements
unaltered [ g] partition must be saved separately so that the internal load
vector can be formulated as per (3.37). Furthermore, even if the internal
unknowns are not desired, one may still wish to save the individual element
stiffness matrices anyway. This arises from the fact that the recalculation
of the entire element stiffness matrix can be avoided if an increase in the
order of p is needed as the solution progressed from one iteration to the
next. As was shown by Katz et. al.[10], special nodal variables can be
created so that the updated element stiffness matrix can be constructed
by simply appending the rows and columns of the new DOF to the initial
matrix.

Keeping the aforementioned issues in mind, the number of stiffness ma-
trix elements stored when not using the HPT can be written as

]uhp - /jhp + "'2(/3;: +p ,/-'?IE) (3.81)
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where

B, = Equation (3.51)
Brp, = Equation (3.55)

pBre = g[(fiv;3 — 1192 4+ 57+ 2)p + 4(n — 1)) (3.82)

Note that ,3;g accounts for the dual storage of the connectivity partition
of the stiffness matrix for the p-extended elements. If the internal DOF of
the individual elements are not calculated, this term can be discarded from
(3.81). Moreover, if the element stiffness matrix is regenerated from scratch
when needed, 3, can be thrown out as well.

For the HPT, the functions given by (3.42) and (3.43) for an h-extension
are applicable to p- and hp-extensions as well. Writing them in terms of
and 7 yields

M, ~ 6Tspzmz(n—l)2 (3.83)
91 p?k?(n — 1)

]\I, 4 (2)2(1—1)

s le(2,(L 1)) (3.84)

The number of stiffness matrix elements stored for the Lt level can be
represented as

K.2

W,,_—l)(ﬂp +, BIE) (3.85)

Assuming that the L level substructure is comprised of at least nine
p-extended elements, i.e.

My = (8 +1 Bre) +

N

(2—)({_'1‘) >3 (3.86)

26



then p/3 is defined by (3.77) and

2 .3 2
_r 8k K 3x 2
wie = 3 [((2)“-” (2P T gy T 2) !
20k3 K2 TK ‘
- (2)3(2-1) - (2)2(L-1) - (2)(L-1) —6)7

1243 2k2 2K
+ (2)3(1,-1) - (2)2L~1) - (2)(L-1) —4
.3

(8% = 20 + 12 (3.87)
(2)3—n S n+12) :

From (3.45) and (3.83) - (3.87), the total number of stiffness matrix ele-
ments stored when using the HPT is

L
2

" PRI =1 P K .
rpMrs ~ \4—(91 —114)+—2—(—2m(227; — 57+ 36)

+K'2(/3p +p/31E) (3'88)

Using (3.81) and (3.88), the relative reduction in the number of stiflness
matrix elements that must be stored by the HPT, for a large number of
p-extended elements, is

1 (229 - 57y + 36)
(2)E=1) (1402 — 37y + 24)

;IX—I = 2, { ¢ [2,.[:]
(3.89)

Kll_}lolc npMr s/,

Setting the HPT solution strategy aside for a moment, it is worthwhile
to note the significant difference in the number of computational operations
required to condense out the internal variables of an element refined hy h-
extension as opposed to p-extension. That is, assuming the same number
of DOF per node and n; = 7, the number of arithmet;c operations required
to statically condense out the internal DOF of an h- extended element js.
from (3.3), on the order of O[p*(n;1)?] and. from (3.42). on the order of
O[p%(7)°] for the p-extended version.
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This observation is significant in that the p-extension, for a fixed number
of DOF, is generally accepted to be the more accurate of the two meth-
ods[11,12]. However, as was just shown, this occurs at the cost of being
much more computationally intensive. In the next section we will discuss
more rigorously the implications of the relative computational eflorts asso-
ciated with h-, p-, and hp-extended elements.

3.3 COMPARISON OF h-, p-, AND hp-EXTENSIONS

To date, a great deal of effort has been expended to determine the rela-
tive accuracy of the h-, p-, and hp-extension techniques|3,11-13]. The crite-
ria generally used to make this comparison is the amount of error incurred
for a given number of DOF. But, with the same number of DOF, the static
condensation process for the various methods of localized mesh refinement
can have substantially different computational costs. These differences will
be quantified on a relative basis in this section. Obviously, there are other
aspects of the solution, beyond the actual condensation process, that can
affect the overall computational effort. However, our objective here is to
simply point out that the actual CPU time required to obtain a given degree
of accuracy might be a more relevent basis of comparison.

To begin the discussion, we will compare the methods of h- and p-
extensions as applied to a single element. Before proceeding, however,
cerlain aspects of the comparison must be clarified. For example, when
referring to a p-extended element, it should be understood that we are
addressing the conjunction of two complete pt® order triangular elements
as described in the previous section. In addition, since it is not clear as
to whether the internal DOF of a p-extended element will be calculated or
not, we will restrict the discussion to the computational effort associated
with condensing the stiffness matrices and load vectors. In other words, the
back substitution phase of the solution will not be considered. With this in
mind, the number of arithmetic operations required to statically condense
out the internal variables of an h-extended element 1s. from (3.3),

9
Ch ~ 50 () (3.90)
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For a p-extended element, the number of computations required to per-

form the same operation is, from (3.50),

3

P
C, ~ :—ﬁnr‘(n+9) (3.91)

Since we are addressing the refinement of a single element, n; and 3 are
equivalent, see Figures 3.2 and 3.14. That 1s, assuming the same number
of DOF per node (p), n; and 1 define the same total number of DOF.
Therefore, from (3.90) and (3.91),

@ 108

L (3.92)
C'P 771(71] +9)

As can be seen from (3.92), the amount of computational eflort for a single
element refined by p-extension exceeds that of an h-extended one when
11 = 1. To further convey the difference in the cost of the two approaches,
a plot of the actual and theoretical ratio of Cr/C, as a function of 1 1S
shown in Figure 3.19. This difference can he accounted {or by the realization
that a p-extended element gives rise to a stiffness matrix that is very nearly
full while an h-extended one is essentially banded. The significance of this
observation can be better appreciated when you consider that, from (2.4),

1(54)?
Cp ~ LB (3.93)
2 Qpy
1] 1 (II‘?P)2
C, 3 (3.94)
where
an = o, =p(n,)? = pp? (3.95)
Br = Equation (3.1)
By = Equation (3.51)
It then follows that ,
' (ﬂh )
c, 3, (3.96)



Thus, any relative reduction in the number of stiflness matrix elements
aflorded by an h-extension is amplified by the nonlinearity of (3.96). As an
example, from Figure 3.20,

1
gﬂwi ;ny =1n=15 (3.97)
P

Substituting (3.97) into (3.96) gives
'

(—'pwi iy =n=15 (3.98)
Note that the result of (3.98) correlates with the value shown in Figure 3.19
for the prescribed level of refinement.

Proceeding onto a comparison of the n- and hp-extension techniques,
the number of arithmetic operations needed to condense an hp-extended
element /region can be approximated as, from (3.58) and (3.91),

3 2 _ q- 2 3
. P> 4(14n* — 37y + 24) P as (3.99)
Chp 3 K 2= 3) + 52" " (n+9)

Recalling that n; can be written in termis of x and 5 by (3.62), C} can be
recast as

9
Ch ~ §p3[rc(77 -1)+1) (3.100)

Using (3.99) and (3.100), Figure 3.21 shows the resulting ratio of Cy/Chp
for various values of x and 7. As can be seen, C) is greater than Cj,
for all the combinations of x and 7 presented. Since it was shown earlier
that C, is greater than Cj, this result may seem to be contradictory. The
explanation for the apparent discrepency is as follows. When performing
an hp-extension, the individual p-extended elements condense out their
internal DOF before they are assembled into the composite version of the
refined mesh. Recall that this sequence of algorithmic steps is illustrated
in Figure 3.16. As a result, an hp-extension constructed in such a manner
is inherently a two level HPT wherein the 22¢ level substructures are the
p-extended elements. Then, just like the HPT, if the sizé of the 22¢ level
substructures (p-extended elements) becomes too large with respect to their
subsequent assemblage defined by I, (x), the computational effort will
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become suboptimal. Thus, if the order of the polynomials within the p-
extended elements were allowed to become sufficiently large, (7, would be
less than (',. This behavior, for the smaller valyes of K, can be seen {rom
Figure 3.21. To obtain this relation, however, would require orders of p
that are impractical and typically not used.

To get a betier feel for the computational efficiency obtained from per-
forming an hp-extension in the aforementioned manner, we will decompose
the h-extension into the same number of substructures as p-extended ele-
ments, i.e. Ky =« and ny, = 7. Consequently, the only difference hetween
the two approaches is in the effort of condensing out the internal DOF of
the substructures on the 274 Jevel. Thus, in terms of x and 7,

p® (149? — 37y + 24)2 9
—K

,Crs ~ P’k (- 1) 3.101
hCTs ~ 3 (27 = 3) +2P'\ (n ) ( )
Ratioing (3.101) with (3.99) gives
h(;TS <1 ;k2>2n>3 (3.102)
Chp

More quantitatively, Figure 3.22 shows 1Crs/Chy, over the same range of
values for «x and 7 used in Figure 3.21. Comparing these two plots with
each other, we see that the use of localized condensation methods yields a
more favorable comparison of computational efficiency for an h-extensjon.
Moreover, as the number of substructures (k) increases, the ratio rCrs/Chy
approaches unity. This occurs because the assemblage of the substructures
is dominating the solution. Since the composite version of the mesh refine-
ment is the same for both methods, it stands to reason that.from (3.99)

and (3.101),

.C
lim ’CTS =1 (3.103)

K— 00 hp

Based upon the foregoing, it is apparent that the use of substructuring
techniques can significantly impact the relative computational costs. In
this context, we will compare the A- and hp-extension techniques when they
have been hierarchically substructured info their respective optimal HPT's.
In terms of the parameters x and 1. the minimum number of arithmetic
operations for an h-extension is, from (3.34).

, 4225 , . a 1 9p iy — 1)
WCrs = Top P (n=1)" 12~ | Ty T

(3.104)
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where
%{ln[p(m; ~Kk+1))]=3} -1 < Loy < %{ln[p(nn - x+1)%] -3}
(3.105)

The computational effort for an hp-extension disseminated into its optimal

HPT is, from (3.79),

, 4225 1
(s —lg'z*Pa(K-)s("l - 1) [2 - (2—)(1,_-2“)}
3 4 2 - 2
P’ () (14(n)* — 37 + 24) 2
+ § (2T (20 = 3) + (r)° ()
(3.106)

Since the functionality of (3.106) was derived with the assumption that the
Lth level substructures are comprised of at least nine p-extended elements,
the maximum number of levels that can be employed is obtained from the
constraint

2
K 2
[(—2)(—1:1‘;] >3 (3.107)
Solving for L yields
1 : In(2
In(x/3) < mpLopt. < In(2r/3) (3.108)

In(2) In(2)

Referring to the plot of ,Crs/n,Crs, i-e. Figure 3.23, it is very interest-
ing to note the strong influence that an additional level of substructuring
can have on the efficiency of an hp-extension. This influence is manifested
through the racheting behavior clearly seen at the appropriate values of .,
i.e. k = 6,12, and 24. The effect of additional levels does diminish. how-
ever, as x gets larger. This is evidenced by the progressively smaller “step”™
sizes at the transition values of x. Furthermore, the relative efhiciency of
an h-extension improves as 7 increases. This is due. in part, to the fact
that an h-extension can add more levels to handle the increase in the total
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number of DOF arising from larger values of 1. Conversely, the number of
levels for an hp-extension is strictly controlled by the number of p-extended
elements (k).

Lastly, regardless of the value of 5, Figure 3.23 shows that hCrs/npCrs
is approaching unity as x becomes large. This is indicative of the fact that
the lower levels of the HPT are dominating the solution time. Since the
total DOF have been constrained to be the same for both methods, the hA-
and hp-extensions have equivalent computational efforts for the lower levels
of the HPT. From this we can conclude, if the total DOF is sufliciently
large, that the multilevel HPT provides a computational efliciency which
is invariant to the type of fundamental finite element used in the model.

Another facet of the solution process that could significantly impact the
total CPU time required to perform an h-, p-, or hp-extension is the genera-
tion and assembly of the additional elements. In general, both the number
and type of element should be considered. In many instances, however,
only one element actually needs to be created. QOccasions such as this arise
when the refined mesh is comprised of elements with the same geometry
and aspect ratios. Although our comparison of the various methods has not
taken this part of the solution into account, it has sufficed to show that the
computational effort not only varies from one technique to the other, but
1s strongly dependent upon the solution strategy as well. In this context,
we have satisfied our objective. That is, the actual CPU time required to
obtain a given degree of accuracy should at least be included in any real
comparison of the various mesh refinement techniques.

4 PARALLEL HPT FORMULATION

In the previous chapter it was assumed that the multilevel substructural
decomposition of the locally refined mesh discretization had to be con-
densed/solved one substructure at a time. Since multiprocessor computers
are becoming more commonplace, the forthcoming development will be
based upon the premise that the substructures occurring on any particu-
lar level can be condensed/solved concurrently. As was shown by Padovan
and Gute [6], this approach to the solution of FE type numerical mod-
els can yield significant computational improvements. In many mstances
the speedup will be even greater than the number of processors used, i.e.
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superlinear.

Superlinearity is a measure of the processor usage efliciency. More
specifically, superlinearity is the ratio of the effective speedup with the
number of processors used, i.e.

. Rgrp
Sy =~ (4.1)
where
Sy — superlinearity
Ry, rp — effective speedup
® — number of processors used.

It is the opinion of the authors that this approach to measuring the ef-
ficiency of processor usage is more appropriate than other conventional
measures. This arises from the fact that, as will be seen, the number of
substructures/processors required to obtain the optimal effective speedup
is problem dependent. From this it follows that arbitrarily disseminating
an I'E model into the same number of substructures as there are available
processors will typically lead to suboptimal results. In addition, the effec-
tive speedup will be determined by comparing the effective computational
effort of the parallel HPT solution with that of the standard sequential so-
lution. This is done for two reasons. First, it is a measure of speedup that
the general FE user community can identify with as a result of their alimost
exclusive use of single processor, sequential type computers. Second, using
the standard sequential solution as a reference forms the basis from which
the efficiency of all parallel solution algorithms can be compared.

Overall, there are many factors that will affect the actual speedups
obtained on a multiprocessor computer. These include:

1. The communication/data bus structure of the processor network;
2. The degree of sophistication of the resident compiler;

3. The amount of globally shared memory and the concomitant access
efficiency;

4. The speed of the individual processors themselves, elc.



In this context, the objective here will be to simply illustrate the potential
advantages of using the HPT solution strategy to integrate a local mesh
refinement into the initial FE model when a parallel network of processors
can be exploited. This will include trends associated with the following:

1. Effective speedup;
2. Approximation of superlinearity; and
3. Reduction of memory requirements.

Moreover, we will show how the superlinearity of the solution can be im-
proved, without drastically degrading the potential speedup, by implement-
ing a technique called Top-Down, Partial Sequentialisin (TDPS)[6]. Fur-
thermore, based on our earlier comments, it will be assumed that: .

1. The time required to transfer data from one level of tlie hierarchy to
the next is negligible;

2. All of the processors share the same computational capacity as the
sequential reference; and

3. Each processor has enough local in-core memory to store the data of
its assigned substructure.

4.1 PARALLEL HPT FOR h-EXTENSIONS

In Chapter 2 it was shown that the effective computational effort asso-
ciated with the parallel solution of a hierarchically substructured FE model
can be approximated as

L s,2\2
1 (78)
Crp ~ - 4.2
TP ’:Zl [2 fa max ( )
or, more succinctly,
L
('TP ~ Z(('I)ma:r (4-3)

=1
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where -
(Ci)maz = [% (II,—LO)“] (4.4)
maz

Since the substructures occurring on any particular level are constructed so
that they are computationally equivalent, we will, for convenience, dispense
with the maz subscript. Recall that this type of substructure construction
is possible because we have restricted the discussion to 1soparametrically
square regions of mesh refinement.

For a two level HPT, wherein the substructures on the 229 level can be
condensed/solved simultaneously, (4.2) can be written as

Crp = (4.5)
Addressing the solution of a local h-extension, the appropriate functionali-
ties for ya and 3, ! € (1,2], are defined by (3.11) - (3.14). Note that (3.11)
and (3.12) are only valid for K, > 3. Substituting these functions into
(4.5) yields

49 (2K, + 1) 9 4(m)*
Corp~ —p32222 7 7 ()3 —pd—L 4.
nCTp ~ T6P (5, +1) (n1)” + 5P (2)" (4.6)

Thus, the approximate number of processors/substructures that should be
used on the 224 level is determined by satisfying

%’5_) =0 (4.7)
Solving (4.7) yields
. 72\
Ky ~ (4—9-771) :ny > 165 (4.8)
I, =3 ;n, <165 (4.9)

Under most circumstances the value of 7, can be expected to he less
than 165. Consequently, for our present purposes. we will assume {hat
Iy = 3. Substituting this into (4.6) gives '

2401 1

WCrp ~ —GE~P3(”1)3 + ]9/-’3(”1)'1 (4.10)
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Ratioing (', as given by (3.3), with (4.10) gives the effective speedup of
this decomposition. More specifically,

C%
wCrp

Ryrp =

[20%(m )]
[gé—fj—lpg(mﬁ + l’lgpa(771)4]

B 2592 n; (4.11)
(21609 + 32m,) )

~

To set the stage for the measure of superlinearity, we can write the
number of processors of an L level HPT, in general, as |

2

L /i
<I>:1+Z(H1{,—) (4.12)
=2 \i=2
For L = 2 and K, = 3, (4.12) gives
® = 1+ (K,)°
— 10 (4.13)

Ratioing (4.11) with (4.13) gives the approximate superlinearity that can
e expected, i.e.

Ryrp

Sp = q)

2592771 (4.14)
10(21609 + 32n,)

~

As was stated in the introduction of this chapter, the actual perfor-
mance of an OPT on a given multiprocessor computer is dependent upon
several factors. However, by using the empirical data obtained for the se-
quential HPT, we can predict the actual speedup and superlinearity of a
parallel IPT within a reasonable percentage of error. Thus. Figures 4.1
through 4.4 graphically show the correlation of the theorefical speedups and
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superlinearities with the “actual” for various problem sizes when L = 2 and
K, =3

For the case of I{; = 2, the operative functions of ja and ,/3 are defined
by (3.19) and (3.20) respectively. Incorporating these into (4.5) yields

4225 9
wnCrp ~ === p*(m)* + p%(m)? (4.15)

192 32
Once again, forming the appropriate ratio with (3.3), i.e. Cj, and (4.15)
gives the speedup for a two level HPT with K, = 2. Namely,

86G4n,
= ————— 4.16
Rujre (4225 + 54n,) (4.16)

From (4.12), the number of processors required to obtain the speedup de-
fined by (4.16) is

=5 ;L=2,Kk,=2 (4.17)
It then follows that the superlinearity of this particular decomposition is
R64n
Sh ~ . (4 . 18)

5(4225 + 54n,)

Figures 4.5 - 4.8 show how the speedup and superlinearity vary with prob-
lem size for L = 2 and Iy = 2. Moreover, from Tables (4.1) and (4.2), the
following observations can be made:

1. The use of four processors (I{, = 2) on the second level provides faster
speedups than nine (I; = 3) for problems where n, < 55;

2. The magnitude of superlinearity is greater when using five processors
instead of ten for problem sizes in the range of interest; and

3. Regardless of whether four or nine processors are used on the 22¢
level, both the speedup and superlinearity improve as the problem
size increases.

Furthermore, from Table (4.3). a three level HPT with h» = Iy = 2
provides a better eflective speedup than a two level tree for modest values
of n;. In this context we can conclude. as with the sequential HPT, that
the optimal effective speedup for a locally h-extended element;region can
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be obtained with a parallel HPT configuration wherein i, = 2,1 e2,L],
le.

6048(2)4 L1y,
{4225(2)4(L-1)g — (2)73E-2)] + 6048n,}

This conclusion amends the result of I, = 3, L € [2,L], that was given
in [6] where the special case of K; = 2 was not investigated. Fixing the
number of levels and allowing n; to become large, the asymptotic speedup
can readily be seen to he

Riyrp ~ (4.19)

lilll R/,/Tp = (2)4”‘-” N ]\’1 = 2, [ € [Q,L] (4.20)
ny — oo
Moreover, the number of levels that should be employed to attain the op-
timal effective speedup can be approximated by satisfying

p(np_y)? > 160 (4.21)

As with Equation (3.24), (4.21) was determined from empirical data and is
likely to vary from one machine to the next. Using the recursion formula
of (3.31), (4.21) can be recast in terms of ny, namely

p(r1)?
W 2 160 (4.22)

Solving for L yields
18
L< g{ln[p(nl)z] - 2.3} (4.23)

Although (4.23) will give the number of levels that will vield the optimal
effective speedup, the use of this many levels can severely degrade the
superlinearity of the network. This phenomena is clearly indicated in Table
(4.3). To maintain the speedups aflorded by the addition of more levels,
while improving the superlinearity, we can employ the technique of Top
- Down, Partial Sequentialism[6]. TDPS, as the name implies, performs
the condensation of the higher levels (Top) of the HPT in a sequential
manner while solving the lower levels in parallel. The fact {haf TDPS will
not significantly degrade the effective speedup can be seen by forming the
ratios

('

Ciw == 1€ 1.1] (4.24)
(h
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Letting I; = 2,1 € [2,L], where L > 2, Equation (4.24) can be written as

4225 1
Cin lell,(L-1 (4.25)
e 564 20, LE LT -
C 1 (4.26)
‘Lih ™ (2)4(L—1) .
From (4.25) we see that
Cih =8Cyn = 6403 = -+ = (23 EDC 1y (4.27)

In addition, C(g_1)x is greater than 'z, so long as

- 4225
n; < 516 (2)f (4.28)
Equation (4.27) clearly shows thal the computational eflort of the higher

levels is much less than the lower ones. It then follows that solving the
higher levels sequentially will not impinge upon the overall effective speedup.
Consequently, the superlinearity of the solution can be improved because
substantially fewer processors are used to obtain essentially the same speedup.
This is evidenced by Table (4.4) where the 22¢ level processors were also
used to solve the 32¢ level substructures sequentially. In general, the com-
putational eflort associated with the use of the TDPS technique can be
written as

L-£-1
, 4 (1,
wCrops ~ [——9 B 1,]

=1

L- 4225 2(1 L+c) s
* 2 |79 (2 sy P ()
9 ) ’
+ 5@;@—_1,/’ *(m)
4225 , 3 {1 —3(L-L-2) (4420-3L) [ o\ L 1
= — -8 —(2)" - 2)°T 2 -
192/7(":) 7[ (2) ] +(2) [(2) 1]J
9 -
+ §p3(171)4(2)“+2£ b (4.29)
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wlere

L — the number of higher levels solved sequentially, 0 < £ < (L — 1)

L - the total number of levels, including thosed solved sequentially

The total number of processors necessitated by the use of TDPS can be
written in terms of L and £ also, namely

L-¢
¢ = 1+ Y (2)%¢-v
=2

- %[(2)2@—“ _ 1 (4.30)

The reduction in the total number of stiffuess matrix elements that
must be stored for the parallel HPT is the same as that given by (3.47) and
(3.48). However, for networks that do not have globally shared memory
capabilities, it is worthwhile to note the reduced memory requirements on
a per processor basis. Utilizing (3.38) and (3.39) with the proper function-
alities for ;3 and ;3;g, the fractional memory needs of the processors on
different levels are given by

A
Bn

Figure 4.9 depicts (4.31) for [ € [1,(L — 1)] in terms of the parameter n;.
As can be seen, the use of the HPT solution strategy on a parallel network
of processors for h-extended mesh discretizations can significantly reduce
the memory demands placed on a given processor. This is especially true
for processors employed on the higher levels of the Tree.

If the TDPS technique is used, care must be taken to ensure that the
available memory resources of the processor performing the computations
of the higher levels does not become saturated. In terms of the variables
L, £, and ny; the number of stifiness matrix elements that must be stored
by an (L — £)% level processor when using TDPS is

M,/,,: 3 lE[l‘L] (4.31)

ropsMir-cy = Mp_+(4)Mip_coq) + -+ ()€,

~ pH(P[91L(2)7 ) 4 sy (24 RE-RL)
(4.32)
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It has been shown that the dissemination of an h-extended element /region
into a multilevel hierarchy of substructures can provide substantial, even
superlinear, speed enhancements. To improve the solution characteristics
even further, more standard parallel solution schemes could be implemented
in conjunction with the HPT. For example, since the processors on levels
that are not currently “active” are essentially “idle”, they could be used
to perform the condensation of the “active” substructures via the “Parallel
Active Equation Solver” developed by Farhat and Wilson (14]. Moreover,
the assemblages of the lower levels of the hierarchy would lend themselves
very well to such solution techniques because of their relatively large skyline
heights.

4.2 PARALLEL HPT FOR p- AND hp-EXTENSIONS

The advantages of using an HPT solution strategy on a parallel network
of processors were presented in the previous section for h-extended mesh
refinements. In this section we will reformulate the parallel HPT in terms
of the parameters used to describe p- and hp-extensions, that is x and 1.
Once again, we will be concerned with demonstrating the effective speedup,
superlinearity, and memory requirements provided by the HPT approach.

To begin the discussion, recall that the approximate computational ef-
fort of solving this type of mesh refinement without a HPT was given by
(3.58). Now, assuming that the 214 level substructures are solved concur-
rently, the effective number of arithmetic operations incurred by a two level
HPT can be approximated as

Cap o LOBY 1GBY

21(1 22(1

“)'e (4.33)

+ (—.) 4.
K, d

Note that (4.33) also employs the assumption that the internal DOF of

the individual p-extended elements are condensed out simultaneously by

the processors they were assigned to on the 224 level. Letting Iy = 2.

Equations (3.75) and (3.78) can be used to rewrite (4.33) as

4225 PRI = 3Ty + 24 K7
(l ~ T 3.3 -1 3 + 4 ___(1‘
hpt TP oz P I g (2n = 3) 1

(4.34)
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Ratioing (3.58) with (4.34) gives the effective speedup obtained for a par-
rallel, two level HPT where x > 7 2 3 and I, = 2. Figure 4.10 shows the
potential speedup as a function of x and n for this type of HPT decom-
position. It can also be shown that as the number of p-extended elements
becomes large that the speedup is bounded by

}l_{l()lc’ th/rp =16 ; K, = 2 (4.35)

This result is consistent with the two level asymptotic speedup given by
(4.20) for large h-extended elements/regions.

The number of processors used for a two level Tree when 'y = 2 is five,
see (4.17). The superlinearity of the HPT for this set of circumstances is
shown in Figure 4.11. As can be seen from Figures 4.10 and 4.11, both
speedup and superlinearity improve as {he number of p-extended elements
is increased.

For a general L level HPT wherein X, = 2, L€ [2,L], the approximate
computational eflort as a function of x and 7 is

. 4225 iy
]‘PC'TP ~ 1344[)3'(3(7} _ 1)3[8 _ (2) (L 2)]
+ pird (14n° — 3Tn + 24)?
8(2)4(L_1) (27’ — 3)
2
+ (2)2(L-1)C‘P (4.36)

The speedup potential for a given number of levels, L, from (3.58) and
(4.36), is

Yim Rypyrp = (2)*1 S Ky = 2, 1€ (2,1 (4.37)

The bounded speedups given by (3.36), (3.80), (4.20), and (4.37) are

indicative of the fact that the substructure assemblages occurring on lev-

els less than the L have relative computational efforts that are inversely
proportional to the problem size. In other words, for h-extensions,

@ (1
& =0() remz-n (4.38)
or, for p- and hp-extensions,
(Y 1
—— =0 |———| :le|l(L-1) (4.39)
("hp [K(”_ 1)] I ( ]
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In this context, the speedups obtained from a multilevel HPT is only limited
by the number of levels which can be used to scale down the FE model from
its global form to that of a much smaller Lt Jevel substructure.

From the perspective of superlinearity, the number of processors for an
L level HPT with K, = 2, | € [2, L], can be written as

& = %[(2)” —1]

(2)2L
3

(4.40)

Using (4.37) and (4.40), the superlinearity for an asymptotically large mesh
refinement with a fixed value of L is

. linl,‘_..oc R/,p/Tp
lim S,, =
K— 0O (i)

i
16

(2)% (4.41)

~

For more typical values of x, the most efficient use of the processor
network would be obtained by using the technique of TDPS. In general,

4225 1
hp(,'TDPs ~ l_gjz_pams(n _ 1)3 {?[8 _ (2)~3(L—C—2)] + (2)(4+2£—3L){(2)£ _ 1]}
3.4 2 - 2 2
| PPRY (149° — 37Ty + 24) K ‘
+ (2) [8(2)4”"” (21 — 3) (2)2(L—1)C’P
(4.42)

Figures 4.12 and 4.13 show the speedup and superlinearity for various val-
ues of k and 1 when I = 3 and £ = 1. Comparing these with Figures
4.10 and 4.11, one can see that the technique of TDPS not only improves
superlinearity, but, for larger numbers of p-extended elements, can enhance
the overall effective speedup as well.

The total number of stiffness matrix elements stored hy the HPT for
this type of mesh refinement is given by (3.88) and (3.89). On a per proces-
sor/substructure basis, the relative storage requirements can he posed n
the same manner as (4.31). The operative functions for p- and hp-extensions
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are given by (3.81) and (3.83) - (3.85). More specifically,

M (37t - 17] (4.43)
Ve [y + ~*(Bp +5 BiE)] .

[9_] pzngv)—-l )3]

My, L le2.(L -1 .
I/IP [ﬁ/lp-{_’{z(ﬂp +p/31E)] [ ( )] (A 44)
(L8 +1 Bie) + = (Bp +5 BiE)
My [ Rf2l 7 P IE] (4.45)

|/3hp + K'z(ﬂp +p /315 )]

Comparing (4.43) with (4.44) we see that the storage requirements on the
first level exceeds those of the processors on the 224 through (L — 1) levels,
that is

AIl/hp > ]\12/1,}, > e > A"I[/],P > e > A{(L-—l)/hp (4.46)

In this context, the first level forms an upper bound of the memory re-
quirements for the processors used on the first (L — 1) levels. This upper
bound is shown in terms of x and 7 in Figure 4.14. As can be seen {rom
Figure 4.14, the relative reduction in the number of stiffness matrix ele-
ments that must be stored on a per processor basis improves as the number
of p-extended elements increases. Upon inspection of (4.45) it is apparent
that the relative storage requirements for the Lt level processors depends
on L, k, and 1. However, since the relative storage requirements for the Lt
level decreases as L increases, the limiting fractional storage requirements
for this level occurs when L = 2. Thus, from (4.45), it can be shown that

1
]\’IL/},;,S— ;T]S].O (4.47)

N

To conclude our discussion on the use of the HPT for p- and hp-extended
mesh discretizations in a parallel computing environment, the total number
of stiffness matrix elements that must be stored by the (L — L)% level
processor when using TDPS is

L-1
ropsMip_cy = > (2)FENL 4 (20740
.

~ 1P Y = 1P L2 4 (2)¥ AL (4.48)



Equation (4.48) can be used to ensure that the processor performing the
calculations of the higher levels will not have its local memory resources
saturated when employing TDPS. Note that this applies only for machines
that do not have “globally” shared memory facilities. Furthermore, (4.48)
is similar to (4.32) in that the only differnce is in the amount of storage
necessitated by the L level substructures. This arises from the fact that
(4.48) can account for the storage of the stiffness matrices associated with
the p-extended elements and their subsequent assemblage into the Lt level
substructure.

5 SUMMARY

This paper has demonstrated how a multilevel substructuring technique,
called the Hierarchical Poly Tree (HPT), can be used to integrate a local
mesh refinement into the original finite element model more efficiently. The
optimal HPT configurations for solving isoparametrically square regions of
mesh refinement on single and multiple processor computers was derived.
Moreover, it was also shown that the HPT inherently reduces the total
number of stiffness matrix elements that must be stored. For example,
an h-extension of an element /region can be solved sequentially on a single
processor computer with a speedup approximated by

Ch 432 (2)2(L'” n,y
hCrs {4225 (2)(L-1) [(2)(E-1) — 1] + 4320}

Rynirs =

(5.1)

As can be seen, the speedup afforded by the HPT is dependent upon the
size of the mesh refinement and the number of substructuring levels used,
i.e. ny; and L respectively. However, for a given value of L, the asymptotic
speedup for large n; is

2(L-1)

Jim_ Ryyrs = (2) (5.2)

In addition, the fractional number of stiffness matrix elements that must

be stored when using the HPT solution strategy was shown fo be

nMrs  (91L — 117) N 3
M), 12n, 3(2)HL-1

c L>2 (5.3)

wWMrsiy =
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The number of levels that should be employed to achieve the optimal
speedup must be determined empirically. That is, the smallest substruc-
ture size that the refinement can be subdivided into, without degrading
the solution time, is machine dependent. This is because computational
overhead varies from one machine to the next and is the dominant factor
in determining this parameter. Theoretically, the number of levels that
should be used to obtain the most efficient solution would only be limited
by the fact that the L* level substructures must contain more than one
fundamental finite element|6).

To address the solution of an hp-extended element/region, the degree
of mesh refinement was defined by the variables x and 7. More specif-
ically, (x)? is the total number of p-extended elements and 7 quantifies
the complete p order polynomial used within the elements by way of the
number of “external” nodes along one edge of the periphery. Note that
an hp-extension of a single element is computationally equivalent to the
assemblage of (x)? p-extended “global” elements of the same polynomial
order. The speedup obtained by using the sequential HPT for this type of
mesh refinement is given by

Chp Equation (3.58)

Ripj1s = ~ : 5.4)
rpiTS mCrs  Equation (3.79) (
However, if k is large, the relation
ny ~ k(n —1) (5.5)

can be used in conjunction with (5.1) to approximate the resulting speedup
within a reasonable percentage of error.

As with the h-extension, the HPT solution strategy can reduce the total
number of stiffness matrix elements that must be stored for an hp-extension.
The actual magnitude of these savings, however, is dependent upon some
subtle, but significant issues. These include:

1. If the internal DOF within the p-extended elemenis themselves are
to be calculated, then each individual element stiffness matrix. along
with its unaltered [ g] partition. must be saved for the back substi-
{ution phase of the analysis; or.



2. If the special nodal variables developed by Katz et.al. {10] are used,
the element stiffness matrix may be saved to avoid recalculating it
from scratch whenever an increase in the order of p is needed as the
solution progresses from one iteration to the next.

With this in mind, the relative number of stiffness matrix elements that

must be stored when utilizing the HPT with respect to the standard hp-

extension solufion is

rpMrs  Equation (3.88)
My, Equation (3.81)

npMrs/np = (5.6)

It needs to be pointed out that Equations (3.81) and (3.88) have ac-
counted for the extra storage required to store the element stifiness matri-
ces and corresponding [I{;g] partitions. If these matrices do not have to be
stored, the appropriate terms can simply be discarded. For a large number
of p-extended elements, it was shown that

1 (2292 — 57y + 36)
(2)(E-1) (1452 — 37Ty + 24)

Jim pp Mrsyny ~ (5.7)
The advantages of using the HPT solution strategy on a multiprocessor
computer were also presented. Machines of this type provide the capability
to condense/solve the substructures on any particular level concurrently.
Oftentimes the eflective speedup that can be obtained from exploiting this
technology is even greater than the number of processors used. In partic-
ular, an h-extension solved in this manner will yield an eflective speedup

of
Ch 6048(2)1E= 1y,

nCrp  {4225(2)E-1)[8 — (2)~3(E-2)] 1 6048n,}
Recall that this measure is made relative to the standard sequential solu-
tion. This was done for the following reasons:

Rypjrp = (5.8)

1. 1t is a measure of speedup that the general FE user community can
identify with as a result of their almost exclusive use of single proces-
sor, sequential {ype computers; and,

2. Using the standard sequential solution as a reference forms the basis
from which the efliciency of all parallel solution algorithms can be
compared.
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As with the sequential HPT, the potential speedup depends upon the prob-
lem size, ny, and the number of substructuring levels. L, employed. But,
fixing the value of L and letting n; become large yields

lim R;,/Tp = (2)4(L_]) (5.9)

My — o0

Although (5.9) indicates that the use of more levels would enhance the

overall speedup that could be attained, one must consider if the increased
number of processors that this would require is warranted. It was in this
context that a measure of the processor usage efficiency, called superlinear-
ity, was defined. Specifically, it is the ratio of the eflective speedup with the
total number of processors/substructures used. This approach to quantify-
ing the efliciency of the solution was chosen because the optimal number of
processors/substructures that should be used to achieve the best speedup
is problem dependent. Since the number of processors for an optimal HPT

1s

¢ = (2" -1]
3

(2)°
~ 5.10
3 ( )

the superlinearity for an h-extension can be approximated as
: 18144(2)?L-9

S, = Rynrp (2) ny (5.11)

& {4225(2)*C-1[8 — (2)-3(L-2)] & 6048n,}

Thus, from (5.11), a two level HPT will provide a speedup that is greater
than the number of processors used when n; > 40. For a three level HPT,
the problem size must be such that n; > 130.

To achieve the speedups afforded by the addition of more substructur-
ing levels, and still be computationally efhicient for smaller sizes of n,, a
technique called Top-Down, Partial Sequentialism (TDPS)[6] can e used.
TDPS takes advantage of the fact that the higher levels of the hierarchy
represent a small portion of the total computational effort. Subsequently,
the substructures on the higher levels of the HPT can be solved sequentially
by processors assigned to the lower levels without significantly impinging

the overall solution time. As an example. for an h-extension with n; = 37,
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it was shown that the third level substructures of a three level HPT solved
sequentially by the second level processors would yield a superlinearity
greater than one while still “conserving” 81 percent of the speedup. Both
the superlinearity and effective speedup obtained from using TDPS improve
as the problem size increases.

For hp-extensions solved by a parallel HPT, the eflective speedup that
can be expected, in terms of k and 7, is

Chp Equation (3.58)
rpCrp  Equation (4.36)

th/TP = (5. 12)
Using (5.12), it can be shown that the limiting speedup for a given number
of substructuring levels is

lim Ryyyrs = (2)"47Y (5.13)

Note that the asymptotic speedups provided by sequential and parallel
HPT’s are invariant with respect to the mode of refinement used. Iu other
words, regardless of whether the refined mesh discretization is a large scale
h- or hp-extension, the relative speedups will be the same. In fact, it was
shown that the actual solution times will be essentially the same for a
given number of DOF. This follows from the observation that the Lt |evel
substructures, that are comprised of the basic finite element assemblages,
represent a small portion of the overall solution time. Consequently, the
actual CPU time required to solve a large, isoparametrically square mesh
refinement via an HPT will not be significantly affected by the type of
{inite elements used! Simply put, it does not matter whether 3 or 6 node
triangular, 4 or 8 node quadrilateral, etc. elements are used; the HPT
solution strategy will yield the same relative speedup and CPU time. It
must be reiterated, however, that this is only true for an asymptotically
large number of DOF.

Without the use of the HPT, the computational effort for solving h-,
p-, and hp-extensions can differ substautially for the same number of DOF.
As an example, assuming the same number of DOF per node and n, = 5,
the relative number of arithmetic operatlions required to condense out the
internal DOF of single h- and p-extended elements is

ﬂ:o[ ! ] (5.14)
C, (n,)?




Equation (5.14) clearly shows that these two fypes of refinement have sig-
nificantly different computational costs. Turning our attention to h- and
hp-extended element /regions, the relative computational effort for perform-
ing the condensation process is, in terms of x and 7,

'y Equation (3.100)
Chp Equation (3.99)

(5.15)

Note that (5.15) was derived with the assumption that the internal DOF
of the individual p-extended elements are condensed out before they are
assembled. For values of < 15, it was shown that

C"h 2 C’hp (5-16)

Thus, the relative computational effort involved in condensing/solving the
various modes of refinement is, for a fixed number of DOF,

C"p > C’/, > C"hp (5.17)

This comparison of the various methods was performed to illustrate that
the practice of comparing their relative accuracy on a DOF basis may be
misleading. From a pragmatic point of view, it is cur opinion that the
actual amount of CPU time required to obtain a certain degree of accuracy
may be a more relevant form of comparison.

In closing, the HPT has been shown to be computationally eflicient and
less demanding of memory resources. From a more philosophical perspec-
tive, the HPT solution strategy also provides:

1. Localized “error-trapping”. This occurs because a given DOF, as a re-
sult of the hierarchical substructuring process, will have a compacted
column height. Consequently, the reduced coupling with other DOF
diminishes the direct influence that a finjte element approximation
error can have on the rest of the model.

2. A means with which to “telescope™ into a physical anomaly or analvt-
ical singularity by grafting another localized HPT onfo the previous
one. This is a logical, eflicient way of fraversing from “coarse” to
“fine” scales of model definition.
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APPENDIX A

The appendix is comprised of four figures which illustrate the
numbering schemes employed for the substructuring primitives used

in the development of the HPT. Note that

1) The "internal" degrees of freedom (DOF) are

numbered first; and,

2) The "external" DOF lie on the periphery of each

substructuring primitive.
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