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CORIOLIS EFFECTS ON NONLINEAR OSCILLATIONS OF
ROTATING CYLINDERS AND RINGS
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SUMMARY

The effects which moderately large deflections have on the frequency
spectrum of rotating rings and cylinders are considered. To develop the
requisite solution, a variationally constrained version of the Lindstedt-
Poincare procedure is employed. Based on the solution developed, in addi-
tion to considering the effects of displacement induced nonlinearity, the
role of Coriolis forces is also given special consideration.

INTRODUCTION

Numerous engineering applications (tires, turbines, satellites, etc.)
contain rotor systems which are essentially rings or shells of revolution
rotating about their axes. Obviously, in order to properly influence their
design; a thorough dynamic analysis is necessary. In this regard, numerous
papers have been published which deal with the free vibration properties
of such systems. Most such work has centered on stationary configurations,
as can be seen from the excellent surveys by references 1 and 2. The effects
of rotation, in particular Coriolis forces, have been discussed by references
3 to 7. With the exception of references 6 and 7 which treated small dynamic
deformations superposed on Tlarge static deformations, the previous investiga-
tions incorporating Coriolis acceleration forces have been limited to linear
shell theories. This is a shortcoming since numerous rotor systems, tires,
satellites, and turbines are flexible enough to undergo significant deflections
in the form of moderately large rotations.

It is the purpose of this paper to consider the effects which such
moderately large rotations have on the frequency spectrum of rotating struc-
tures. In particular, the analysis presented will consider the free
vibration characteristics of rotating rings and cylinders wherein the deflec-
tions involve moderately large rotations. Since the analytical model used
to characterize the stated problem involves nonlinear partial differential
equations, a modified version of the renormalized perturbation procedure is
employed to evaluate the overall solution. This modification was undertaken
since the usual renormalized procedure is unwieldy for systems of equations
involving a multitude of frequency eigenvalue branches and secondly yields
steady state results which are irregular for the linearized case. The modi-~
fication employed involves prescribing the system energy in advance; hence,

a hierarchy of energy states is obtained from which the strained parameter
can be evaluated. The resulting solution employing this procedure is
regular, and thus, the proper limiting behavior is obtained for the linearized
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case. Based on the solution, in addition to considering the global effects of
nonlinearity, special emphasis is centered on determining the effects of
Coriolis forces in the range of deformations marked by moderately large rota-
tio?s. Hence the effects on the backward and forward traveling waves will be
evaluated.

GOVERNING EQUATIONS

Since the nonlinear oscillations of rotating, elastically supported rings
and infinite cylinders undergoing deflections involving moderately large rota-
tions are considered herein, the governing displacement equations of motion
employed to model the stated problem are defined by (refs. 2,4,6, and 7)

AW,  +A (v,e+W)+(K+§)w-eA (%w,2+v W, #V, W, +WW
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such that € = W /R and 8, t, ( ).g> ( )st> Ws V, Wy, E, I, hy R, 05 Py «, w, and
Q respectively = represent circumferential space, time, space and time dif-
ferentiation, radial and circumferential shell displacements, maximum radial
displacement, Young's modulus, moment of inertia, shell thickness, radius and
density, internal pressure, foundation elasticity, exciting frequency, and
lastly, the rotational speed of the shell. Due to the inherent nature of the
circumferential coordinate space and the fact that the steady state response

is being sought, it follows that W and V are periodic in both space and time.

To round out the requisite field equations, the following potential energy
functional is associated with equations (1) and (2), namely

T 2w
y=7 7/ {AW,2 +A (v,2+2v,ew+w2)+sA (v,ew,2+ww,2) +
00 2 2 0

12680
12 4 Pyu2 2 (R* 1o 2
7€ Azw,e+(K+§)w +2f cos (me) cos (wt)W-ph[Q2(R +W) +w,t +

92V2+V,%+29(R*+w)v,t—29w,tv]}dedt (4)

1 * _
where T = = and R = R/wm.
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SOLUTION

As noted earlier, the standard renormalized perturbation procedure has
the twofold difficulty of yielding irregular results as e-0 and secondly, is
unwieldy when more than one equation of motion 1nvo]ving several frequency
eigenvalue branches is considered. This difficulty is circumvented by pre-
scribing the systems potential energy in advance such that (W; V) = (W(e,t,f,

m,y)s V(6,t,f,m,y)). Once the solution is obtained, the role of y and W are
reversed to that employed in the traditional version of the renormalized pro-
cedure. To initiate the solution, w is treated as the strained parameter;
hence W, V, and w are expanded in the following perturbation series

<W; V3 w> = % <W ; V 3w, >e1 (5)
i=0 i

such that time is stretched so that t = wt.

In order to obtain the zeroth order equations, ¢ is set to zero; this
yields

: P
A, eeee+(Az+K+§)wo+A2Vo G 0,tt ~
—q2 =
Zwoszvo’T Q w0)+f cos (me) cos (t) =0 (6)
< 2 o2
A <Vo oo Yo, 6) ph(‘*’ovo, 2w M, -0 Vo) (7)
Zm 2 2 2 Pyw2
F= g g {Alwo 00 Az(vo 67,0 Wy FUE )+ (WG +

x 2 ,
-ohlo2 22 +02V2442V2
2f cos (me) cos (T)Wo ph[e (R.+Wo) +w0W0’T+Q V0+on0 +

s T

*
2w09(R +WO)VO’T - ZmOQWO’TVO]}deT (8)

‘whereas with time, the potential energy space is stretched so that T = y/Q.
Since the steady state solution is sought,

(wo; VO) = (WCO; VCO) cos (m9)+(wso; Vso) sin (mo) (9)

where Weg» are time dependent. Employing equations (9), (6), and (7) reduce
to the %ol]owing matrix set of ordinary differential equations, namely

w2 =
[Blm]Ymo T mo[Bzm]Ymo T [Bam]Ymo+f cos (T) 9 (]0)

such that
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Noting that [B,n,] is skew symmetric while [B m] and [B ] are purely sym-
metric, the steady state form of Y is g1ven by

Xmo = gmc cos () + %ms sin (1) (12)

where gmc and gms satisfy the matrix equation

f_ ) wo[B =B p] 008y e (13)
0 w,[B,1 wolB (Bl ) L Z

~Mms

Noting that the pencil of equation (13) yields the characteristic equation
of equation (10), equation (12) becomes unbounded for w, equal to the natural
frequency eigenvalues of the linear case. The properties of such e1genva1ues
can be ascertained by developing the appropriate Rayleigh quotient. This is
possible by inserting ymaZy eJT into.equation (10) to yield a complex second
order regular po]ynom1aT matrix problem. The inner product of this expression
and yields a bilinear form from which the following modified version of
Rayléigh's quotient is obtained, namely

208,12 | 28, 1z [ 7708, 12 \2 | Y2

. ~M- 2m
wy = § T=F T = (14)
whiiz, oM, \ bz,

As can be seen from equation (14), Coriolis forces cause a twofold bifurcation
in the number of eigenvalue branches. Following the previous comments, the
relationship betweenT and wg, Wy, and V, must be evaluated by inserting equa-
tions (9) and (12) into equation (8); this yields

P
" . 2402m2) (W2 +W2 +W2
[A mit+A +K+§- oh(g +w m )](WCCO wcso wsco sso) *

[A mz-ph(92+m2 2)](V2 +V2 )+2mA (v

CCO CSO SCO SSO SCO CCO

vSSOWCSO VCCOWSCO VCSO SSO) ~Zoh Qm(wCCO Ccso wCSOVCCO *

-W__. - + - +
WscoVsso™Wsso'sco Vccowcso Vesoeco vscowsso

Vssowsco):| = T/n? (15)

where wcco""’vsso denote coefficients of the wo and Vo solution, namely
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(wO;VO) = (W

CCO§Vcco)cos(me)cos(r)+...+(w )sin(me)sin(t)

ss0°'ss0
As can be seen from equations (13) and (15), four potential énergy resonances

are initiated for wy~0(wys) wherein wys are the frequency eigenvalues of the
linear problem. Hence equation (5) is regular for € > 0 (the Tinear case).

The first order set of field equations can be obtained by taking the first
derivative of equations (1), (2), and (4) with respect to € and then setting ¢
- to zero. This yields

' P P - o2 -
A1w1,eeee+A2(v1,e+W1)+(K+§)w1+ph(“ow1,rr'zgwov1,r 8 w1);‘
1,0 _ _ :
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2
g é {2A1wo,eew1,ee+2A2(vo,e+wo)(V1,9+w1)+Az(Vo,e+wo)wo,e+

2(+)W W, +2f cos (mo) cos (T)wl-zph[gz(R*+wo)w1+

W2 +w2W W 402V V 4+ 2 ¢
w0 Ng, oo, oMy, T VY Fuge, Vg o

2 + *
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*
+ + +
oVo,tV1,1 T QwoR V1 Quw W.V

s T 01 0,71

3

+ - - -
QwOWOVI,T leonO’T QwOWI,TVO Qwowl,rvl

lewl’TVO]}dedT =0 (18)

Noting the form of the inhomogeneities appearing in equations (16) and (17), it
follows that Wy and Vy can be taken in the form

: (wl;Vl) = (NCI'VC1) cos (2r)+-(wSl;VSI) sin (2¢) +

ootk (W_ sV ) sin (me) sin (1) (19)

$Ss1° 'ss1

where the coefficients Wc1,... are directly obtained upon inserting equation
(19) into equations (16) and (17). Furthermore, employing equat1on.(19) in

conjunction with the first order potential energy constraint, equation (18),
the following functional relationship is obtained for wy, namely
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w, = o, (1/D(2v,,0), 1/D(0,2m), 1/D (2w, >2m)) (20)

where D is the determinant of the pencil of equation (13). Hence for wo~0(wyf) »
wy s bounded and positive definite. This follows since 1/D(2uwg,0),.. . etc.
remain bounded for Ywoe(0,»). Therefore, unlike the zeroth order set, W; and

Vi remain bounded for Vuwg.

In order to obtain the second order field equations, equations (1), (2), and
(4) are differentiated twice and then € is set to zero. This operation yields

P 2
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(continued)
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Zﬂwowo,Tvz_ZQmowz,Tvo—Zlewo,TVI-Zlewl,tvo -

Zﬂwzwo,Tvo]}dedr ‘ (23)

As in the zeroth and first order cases, noting the inhomogeneities of
equations (21) and (22), Wy and V;, take the form, namely

(wz; V2) = (wcz; ch) cos (2t) + ...

+ (W v Sz) sin (3me) cos (3t) (24)

ss2?

Employing equations (24), (21), and (22), it can be shown that the following
proportionalities exist, that is

(W5, )e(W, (1/D3( ,m))3 ¥, (1/03(um))) (25)

Hence Wy and Vo become unbounded for w,~O(wyf). The requisite form of wp can be
obtaines by 1nsert1ng equation (24) 1n%o the second order potential energy
functional, namely equation (23). After extensive man1pu1at1ons, this operation
yields the following proportionalities for wp, that is

w2 = szUM(]/Du(wosm))/szEN(1/DZ(w03m)) (26)

Thus for wo~0(wpf), wz~0(1/D?(wg,m)) where, since D?*(wpf,m) is singular, wy
is itself unbounded and negative definite. Additionally W, and V, are
themselves unbounded at such values of wg.

DISCUSSION
Stopping the sd]ution at this point, W, V, and w are given by
(W3 Vs w)~(Wys Vs w)) + (W35 Vs w)e +
TR 2 3
(Wz, Vs wz)e + 0(e3) (27)

Due to the procedure employed, it follows that W and V are regular in g,
including ¢ = 0. This result is,in contrast to standard renormalized
perturbation procedures which do not yield zeroth order solutions exhibit-
ing the proper unbounded behavior for w on the order of the linear system
frequencies. :

The softening behavior of the ring or infinite cylinder can be directly
obtained by considering the fundamental relationship between w and T.
Before doing this, the nature of the wgy dependency of « must be ascertained.
In particular, for wo~0(wmf) s

415



wuy + <0(1) - €20 (—— )+ 0(e3) (28)

Dz(wosm)

where since w, is negative definite and unbounded, w is itself negative
definite and unbounded. Such unboundedness occurs at each of the eigen-

values of the pencil of equation (13). Note as Q is set to zero, the two pairs
of eigenvalue branches merge back to the two frequency branches of the station-
ary state, and hence, the traditional frequencies are obtained.

Eliminating w, from equations (28) and (15), it follows that since w is
unbounded and negative definite for wy~O(wypf), the overall steady state harmonic
behavior of the ring or infinite cylinder i1s of the softening type. Hence,
as w is raised or lowered, the usual softening type jump phenomenon is
encountered.

In the context of the foregoing, the results can be summarized by the
following remarks: :
(1) Coriolis forces induce bifurcations in the frequency spectrum;

(2) Such bifurcations extend into the range of deflections marked by
moderately large rotations;

(3) A11 branches exhibit a softening type behavior; this applies to the
branches associated with forward as well as backward traveling waves;

(4) Driving frequencies in the neighborhood of the linear system
frequency may induce jump phenomena;

(5) Setting 9+0 yields the results for stationary rings and cylinders.
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