65 research outputs found

    The molecular mechanisms underlying reduced E-cadherin expression in invasive ductal carcinoma of the breast: high throughput analysis of large cohorts

    Get PDF
    E-cadherin is a tumor suppressor gene in invasive lobular breast cancer. However, a proportion of high-grade ductal carcinoma shows reduced/loss of E-cadherin. In this study, we assessed the underlying mechanisms and molecular implications of E-cadherin loss in invasive ductal carcinoma. This study used large, well-characterized cohorts of early-stage breast cancer-evaluated E-cadherin expression via various platforms including immunohistochemistry, microarray analysis using Illumina HT-12 v3, copy number analysis using Affymetrix SNP 6.0 arrays, and next-generation sequencing for differential gene expression. Our results showed 27% of high-grade invasive ductal carcinoma showed reduced/loss of E-cadherin membranous expression. CDH1 copy number loss was in 21% of invasive ductal carcinoma, which also showed low CDH1 mRNA expression (p = 0.003). CDH1 copy number was associated with copy number loss of TP53, ATM, BRCA1, and BRCA2 (p < 0.001). Seventy-nine percent of invasive ductal carcinoma with reduced CDH1 mRNA expression showed elevated expression of E-cadherin transcription suppressors TWIST2, ZEB2, NFKB1, LLGL2, CTNNB1 (p < 0.01). Reduced/loss E-cadherin expression was associated with differential expression of 2143 genes including those regulating Wnt (FZD2, GNG5, HLTF, WNT2, and CER1) and PIK3-AKT (FGFR2, GNF5, GNGT1, IFNA17, and IGF1) signaling pathways. Interestingly, key genes differentially expressed between invasive lobular carcinoma and invasive ductal tumors did not show association with E-cadherin loss in invasive ductal carcinoma. We conclude that E-cadherin loss in invasive ductal carcinoma is likely a consequence of genomic instability occurring during carcinogenesis. Potential novel regulators controlling E-cadherin expression in invasive ductal carcinoma warrant further investigation

    Panoptic overview of triple-negative breast cancer in Nigeria: current challenges and promising global initiatives

    Get PDF
    PurposeTriple-negative breast cancer (TNBC) is the most deadly form of breast cancer (BC) today. TNBC treatment is fraught with challenges because of the extensive interpatient heterogeneity in clinical behavior and scarcity of stratifying biomarkers and actionable targets. Women of African ancestry face a disproportionate burden resulting from this disease, which affects them earlier and more aggressively and has a higher propensity to spread and resist conventional treatments. A much higher proportion of Nigerian patients with BC have TNBC compared with patients with BC in the United States and Europe.MethodsThis article spotlights Nigeria as an example of a nation wherein genetic and nongenetic spheres of influence intersect to affect the prevalence of this disease, the scale of its challenge, and its toll.ResultsStudies have illuminated the inherently different tumor biology of Nigerian TNBCs, which show distinct genetic variants and gene expression patterns compared with European or European-American TNBCs. Parallels are apparent between TNBC phenotypes among African Americans and Nigerians, implicating the common thread of shared genetic ancestry between these populations. Reproductive, lifestyle, socioeconomic, and cultural factors also shape TNBC outcomes in Nigeria, as do resource constraints in Nigerian health care and research sectors.ConclusionIncreasing our understanding of how these factors contribute to poorer outcomes among Nigerian women may uncover valuable insights and strategies in alleviating the TNBC burden in many countries of the world and help reduce the racial disparity in BC-related outcomes here in the United States. Importantly, this review also highlights collaborative global and local initiatives that converge expertise and resources to advance research on effective management of TNBC in diverse populations

    KIFCI, A Novel Putative Prognostic Biomarker for Ovarian Adenocarcinomas: Delineating Protein Interaction Networks and Signaling Circuitries

    Get PDF
    Background: Amplified centrosomes in cancers are recently garnering a lot of attention as an emerging hub of diagnostic, prognostic and therapeutic targets. Ovarian adenocarcinomas commonly harbor supernumerary centrosomes that drive chromosomal instability. A centrosome clustering molecule, KIFC1, is indispensable for the viability of extra centrosome-bearing cancer cells, and may underlie progression of ovarian cancers. Methods: Centrosome amplification in low- and high- grade serous ovarian adenocarcinomas was quantitated employing confocal imaging. KIFC1 expression was analyzed in ovarian tumors using publically-available databases. Associated grade, stage and clinical information from these databases were plotted for KIFC1 gene expression values. Furthermore, interactions and functional annotation of KIFC1 and its highly correlated genes were studied using DAVID and STRING 9.1. Results: Clinical specimens of ovarian cancers display robust centrosome amplification and deploy centrosome clustering to execute an error-prone mitosis to enable karyotypic heterogeneity that fosters tumor progression and aggressiveness. Our in silico analyses showed KIFC1 overexpression in human ovarian tumors (n = 1090) and its upregulation associated with tumor aggressiveness utilizing publically-available gene expression databases. KIFC1 expression correlated with advanced tumor grade and stage. Dichotomization of KIFC1 levels revealed a significantly lower overall survival time for patients in high KIFC1 group. Intriguingly, in a matched-cohort of primary (n = 7) and metastatic (n = 7) ovarian samples, no significant differences in KIFC1 expression were detectable, suggesting that high KIFC1 expression may serve as a marker of metastases onset. Nonetheless, KIFC1 levels in both primary and matched metastatic sites were significantly higher compared to normal tissue . Ingenuity based network prediction algorithms combined with pre-established protein interaction networks uncovered several novel cell-cycle related partner genes on the basis of interconnectivity, illuminating the centrosome clustering independent agenda of KIFC1 in ovarian tumor progression. Conclusions: Ovarian cancers display amplified centrosomes, a feature of aggressive tumors. To cope up with the abnormal centrosomal load, ovarian cancer cells upregulate genes like KIFC1 that are known to induce centrosome clustering. Our data underscore KIFC1 as a putative biomarker that predicts worse prognosis, poor overall survival and may serve as a potential marker of onset of metastatic dissemination in ovarian cancer patients

    A centrosome clustering protein, KIFC1, predicts aggressive disease course in serous ovarian adenocarcinomas

    Get PDF
    Background Amplified centrosomes are widely recognized as a hallmark of cancer. Although supernumerary centrosomes would be expected to compromise cell viability by yielding multipolar spindles that results in death-inducing aneuploidy, cancer cells suppress multipolarity by clustering their extra centrosomes. Thus, cancer cells, with the aid of clustering mechanisms, maintain pseudobipolar spindle phenotypes that are associated with low-grade aneuploidy, an edge to their survival. KIFC1, a nonessential minus end-directed motor of the kinesin-14 family, is a centrosome clustering molecule, essential for viability of extra centrosome-bearing cancer cells. Given that ovarian cancers robustly display amplified centrosomes, we examined the overexpression of KIFC1 in human ovarian tumors. Results We found that in clinical epithelial ovarian cancer (EOC) samples, an expression level of KIFC1 was significantly higher when compared to normal tissues. KIFC1 expression also increased with tumor grade. Our In silico analyses showed that higher KIFC1 expression was associated with poor overall survival (OS) in serous ovarian adenocarcinoma (SOC) patients suggesting that an aggressive disease course in ovarian adenocarcinoma patients can be attributed to high KIFC1 levels. Also, gene expression levels of KIFC1 in high-grade serous ovarian carcinoma (HGSOC) highly correlated with expression of genes driving centrosome amplification (CA), as examined in publically-available databases. The pathway analysis results indicated that the genes overexpressed in KIFC1 high group were associated with processes like regulation of the cell cycle and cell proliferation. In addition, when we performed gene set enrichment analysis (GSEA) for identifying the gene ontologies associated to KIFC1 high group, we found that the first 100 genes enriched in KIFC1 high group were from centrosome components, mitotic cell cycle, and microtubule-based processes. Results from in vitro experiments on well-established in vitro models of HGSOC (OVSAHO, KURAMOCHI), OVCAR3 and SKOV3) revealed that they display robust centrosome amplification and expression levels of KIFC1 was directly associated (inversely correlated) to the status of multipolar mitosis. This association of KIFC1 and centrosome amplification with HGSOC might be able to explain the increased aggressiveness in this disease. Conclusion These findings compellingly underscore that KIFC1 can be a biomarker that predicts an aggressive disease course in ovarian adenocarcinomas

    Rampant Centrosome Amplification Underlies more Aggressive Disease Course of Triple Negative Breast Cancers

    Get PDF
    Centrosome amplification (CA), a cell-biological trait, characterizes pre-neoplastic and pre-invasive lesions and is associated with tumor aggressiveness. Recent studies suggest that CA leads to malignant transformation and promotes invasion in mammary epithelial cells. Triple negative breast cancer (TNBC), a histologically-aggressive subtype shows high recurrence, metastases, and mortality rates. Since TNBC and non- TNBC follow variable kinetics of metastatic progression, they constitute a novel test bed to explore if severity and nature of CA can distinguish them apart. We quantitatively assessed structural and numerical centrosomal aberrations for each patient sample in a large-cohort of grade-matched TNBC (n = 30) and non-TNBC (n = 98) cases employing multi-color confocal imaging. Our data establish differences in incidence and severity of CA between TNBC and non-TNBC cell lines and clinical specimens. We found strong correlation between CA and aggressiveness markers associated with metastasis in 20 pairs of grade-matched TNBC and non-TNBC specimens (p \u3c 0.02). Time-lapse imaging of MDA-MB-231 cells harboring amplified centrosomes demonstrated enhanced migratory ability. Our study bridges a vital knowledge gap by pinpointing that CA underlies breast cancer aggressiveness. This previously unrecognized organellar inequality at the centrosome level may allow early-risk prediction and explain higher tumor aggressiveness and mortality rates in TNBC patients

    HSET Overexpression Fuels Tumor Progression via Centrosome Clustering-Independent Mechanisms in Breast Cancer Patients

    Get PDF
    Human breast tumors harbor supernumerary centrosomes in almost 80% of tumor cells. Although amplified centrosomes compromise cell viability via multipolar spindles resulting in death-inducing aneuploidy, cancer cells tend to cluster extra centrosomes during mitosis. As a result cancer cells display bipolar spindle phenotypes to maintain a tolerable level of aneuploidy, an edge to their survival. HSET/KifC1, a kinesin-like minus-end directed microtubule motor has recently found fame as a crucial centrosome clustering molecule. Here we show that HSET promotes tumor progression via mechanisms independent of centrosome clustering. We found that HSET is overexpressed in breast carcinomas wherein nuclear HSET accumulation correlated with histological grade and predicted poor progression-free and overall survival. In addition, deregulated HSET protein expression was associated with gene amplification and/or translocation. Our data provide compelling evidence that HSET overexpression is pro-proliferative, promotes clonogenic-survival and enhances cellcycle kinetics through G2 and M-phases. Importantly, HSET co-immunoprecipitates with survivin, and its overexpression protects survivin from proteasome-mediated degradation, resulting in its increased steady-state levels. We provide the first evidence of centrosome clustering-independent activities of HSET that fuel tumor progression and firmly establish that HSET can serve both as a potential prognostic biomarker and as a valuable cancer-selective therapeutic target

    A whole slide image-based machine learning approach to predict ductal carcinoma in situ (DCIS) recurrence risk

    Get PDF
    © 2019 The Author(s). Background: Breast ductal carcinoma in situ (DCIS) represent approximately 20% of screen-detected breast cancers. The overall risk for DCIS patients treated with breast-conserving surgery stems almost exclusively from local recurrence. Although a mastectomy or adjuvant radiation can reduce recurrence risk, there are significant concerns regarding patient over-/under-treatment. Current clinicopathological markers are insufficient to accurately assess the recurrence risk. To address this issue, we developed a novel machine learning (ML) pipeline to predict risk of ipsilateral recurrence using digitized whole slide images (WSI) and clinicopathologic long-term outcome data from a retrospectively collected cohort of DCIS patients (n = 344) treated with lumpectomy at Nottingham University Hospital, UK. Methods: The cohort was split case-wise into training (n = 159, 31 with 10-year recurrence) and validation (n = 185, 26 with 10-year recurrence) sets. The sections from primary tumors were stained with H&E, then digitized and analyzed by the pipeline. In the first step, a classifier trained manually by pathologists was applied to digital slides to annotate the areas of stroma, normal/benign ducts, cancer ducts, dense lymphocyte region, and blood vessels. In the second step, a recurrence risk classifier was trained on eight select architectural and spatial organization tissue features from the annotated areas to predict recurrence risk. Results: The recurrence classifier significantly predicted the 10-year recurrence risk in the training [hazard ratio (HR) = 11.6; 95% confidence interval (CI) 5.3-25.3, accuracy (Acc) = 0.87, sensitivity (Sn) = 0.71, and specificity (Sp) = 0.91] and independent validation [HR = 6.39 (95% CI 3.0-13.8), p < 0.0001;Acc = 0.85, Sn = 0.5, Sp = 0.91] cohorts. Despite the limitations of our cohorts, and in some cases inferior sensitivity performance, our tool showed superior accuracy, specificity, positive predictive value, concordance, and hazard ratios relative to tested clinicopathological variables in predicting recurrences (p < 0.0001). Furthermore, it significantly identified patients that might benefit from additional therapy (validation cohort p = 0.0006). Conclusions: Our machine learning-based model fills an unmet clinical need for accurately predicting the recurrence risk for lumpectomy-treated DCIS patients

    Combined HER3-EGFR score in triple-negative breast cancer provides prognostic and predictive significance superior to individual biomarkers

    Get PDF
    © 2020, The Author(s). Epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 3 (HER3) have been investigated as triple-negative breast cancer (TNBC) biomarkers. Reduced EGFR levels can be compensated by increases in HER3; thus, assaying EGFR and HER3 together may improve prognostic value. In a multi-institutional cohort of 510 TNBC patients, we analyzed the impact of HER3, EGFR, or combined HER3-EGFR protein expression in pre-treatment samples on breast cancer-specific and distant metastasis-free survival (BCSS and DMFS, respectively). A subset of 60 TNBC samples were RNA-sequenced using massive parallel sequencing. The combined HER3-EGFR score outperformed individual HER3 and EGFR scores, with high HER3-EGFR score independently predicting worse BCSS (Hazard Ratio [HR] = 2.30, p = 0.006) and DMFS (HR = 1.78, p = 0.041, respectively). TNBCs with high HER3-EGFR scores exhibited significantly suppressed ATM signaling and differential expression of a network predicted to be controlled by low TXN activity, resulting in activation of EGFR, PARP1, and caspases and inhibition of p53 and NFκB. Nuclear PARP1 protein levels were higher in HER3-EGFR-high TNBCs based on immunohistochemistry (p = 0.036). Assessing HER3 and EGFR protein expression in combination may identify which adjuvant chemotherapy-treated TNBC patients have a higher risk of treatment resistance and may benefit from a dual HER3-EGFR inhibitor and a PARP1 inhibitor

    Prognostic Role of Androgen Receptor in Triple Negative Breast Cancer: A Multi-Institutional Study

    Get PDF
    Background: Androgen Receptor (AR) has emerged as a potential therapeutic target for AR-positive triple-negative breast cancer (TNBC). However, conflicting reports regarding AR’s prognostic role in TNBC are putting its usefulness in question. Some studies conclude that AR positivity indicates a good prognosis in TNBC whereas others suggest the opposite, and some show that AR status has no significant bearing on the patients’ prognosis. Methods: We evaluated the prognostic value of AR in resected primary tumors from TNBC patients from six international cohorts {US (n=420), UK (n=239), Norway (n=104), Ireland (n=222), Nigeria (n=180), and India (n=242); total n=1407}. All TNBC samples were stained with the same anti-AR antibody using the same immunohistochemistry protocol, and samples with ≥1% of AR-positive nuclei were deemed AR-positive TNBCs. Results: AR status shows population-specific patterns of association with patients’ overall survival after controlling for age, grade, population, and chemotherapy. We found AR-positive status to be a marker of good prognosis in US and Nigerian cohorts, a marker of poor prognosis in Norway, Ireland and Indian cohorts, and neutral in UK cohort. Conclusion: AR status, on its own, is not a reliable prognostic marker. More research to investigate molecular subtype composition among the different cohorts is warranted
    • …
    corecore