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Abstract

Background: Breast ductal carcinoma in situ (DCIS) represent approximately 20% of screen-detected breast cancers.
The overall risk for DCIS patients treated with breast-conserving surgery stems almost exclusively from local recurrence.
Although a mastectomy or adjuvant radiation can reduce recurrence risk, there are significant concerns regarding
patient over-/under-treatment. Current clinicopathological markers are insufficient to accurately assess the recurrence
risk. To address this issue, we developed a novel machine learning (ML) pipeline to predict risk of ipsilateral recurrence
using digitized whole slide images (WSI) and clinicopathologic long-term outcome data from a retrospectively collected
cohort of DCIS patients (n = 344) treated with lumpectomy at Nottingham University Hospital, UK.

Methods: The cohort was split case-wise into training (n = 159, 31 with 10-year recurrence) and validation (n = 185, 26
with 10-year recurrence) sets. The sections from primary tumors were stained with H&E, then digitized and analyzed by
the pipeline. In the first step, a classifier trained manually by pathologists was applied to digital slides to annotate the
areas of stroma, normal/benign ducts, cancer ducts, dense lymphocyte region, and blood vessels. In the second step, a
recurrence risk classifier was trained on eight select architectural and spatial organization tissue features from the
annotated areas to predict recurrence risk.

Results: The recurrence classifier significantly predicted the 10-year recurrence risk in the training [hazard ratio
(HR) = 11.6; 95% confidence interval (CI) 5.3–25.3, accuracy (Acc) = 0.87, sensitivity (Sn) = 0.71, and specificity
(Sp) = 0.91] and independent validation [HR = 6.39 (95% CI 3.0–13.8), p < 0.0001;Acc = 0.85, Sn = 0.5, Sp = 0.91]
cohorts. Despite the limitations of our cohorts, and in some cases inferior sensitivity performance, our tool showed
superior accuracy, specificity, positive predictive value, concordance, and hazard ratios relative to tested clinicopathological
variables in predicting recurrences (p < 0.0001). Furthermore, it significantly identified patients that might benefit from
additional therapy (validation cohort p= 0.0006).

Conclusions: Our machine learning-based model fills an unmet clinical need for accurately predicting the recurrence risk
for lumpectomy-treated DCIS patients.
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Introduction
The incidence of ductal carcinoma in situ (DCIS) has
rapidly risen over the past few decades [1] and is esti-
mated to affect over 1 million US women by 2020 [2].
Despite the excellent overall survival of DCIS patients
[3, 4], over-treatment is a considerable concern [5],
which results mainly from the inability of standard
clinicopathologic factors to accurately identify a low-risk
group unlikely to recur [6, 7].
One of the goals of DCIS treatment is to curb local

recurrence, especially invasive recurrence. Common
histopathological factors such as age at diagnosis, DCIS
growth pattern, tumor size, margin status, nuclear grade,
presence of comedo necrosis [8, 9], and combinations of
the aforementioned (such as in the Van Nuys Prognostic
Index or in prognostic nomograms) [10, 11] have been
shown to have limited value in predicting recurrence.
Efforts to introduce new DCIS molecular prognostic
variables have not offered consistent results [12] nor
were they found to be significantly prognostic tools [13].
Additionally, transcriptomic models have restrictive
requirements [14], are not cost-effective [15], lack
significant “genetic patterns leading to invasive disease”
signatures [7], and do not take into account the tumor
stromal microenvironment. Thus, there is an unmet
clinical need for novel tools to improve recurrence risk
stratification of DCIS [16].
With the advent of technology able to process data in a

high-throughput manner, computational pathology has
shown promise as a valuable prognostic tool. By integra-
ting image analysis, data generation, and medical statistics,
computational pathology enables a high-level quantitative
tissue analysis [17, 18]. Although relatively new, compu-
tational pathology has already shown marked success in
assisting with diagnosis, tumor classification, and predic-
ting patient prognosis in a variety of cancer types [19–24].
Whole slide quantitative image analysis pipelines have
demonstrated significant discriminatory success not only
using features stemming from pixel (stain) intensities
[25, 26], but also morphometric features and texture
[27, 28]. For predicting DCIS recurrence, various
scales of these image features have been studied using
H&E-stained tissue, such as through quantifying image
features of comedo necrosis within ducts [29]. At the
cellular level, chromatin distribution, long considered a
computationally quantifiable feature of cancer cells [30],
has also been used to predict DCIS recurrence [31, 32]
and was shown to outperform its pathological analog,
nuclear grade [33]. However, these results focus on a
narrow range of very specific characteristics of the
DCIS and discard the rich information that could
potentially be derived from consideration of other
architectural features (e.g., surrounding stromal, blood
vessel-related) within the sample.

Human eye limitations and lack of concordance between
pathologists impact DCIS grading in clinical practice.
Notably, the breadth of DCIS grading is limited to a single
(high-grade) duct, and oftentimes, histopathologic features
are grouped into qualitative categories instead of capturing
and analyzing more granular data derived from quantitative
features. This simplification overlooks (a) the prognostic
value of the surrounding microenvironment [34–36] and
even alterations in non-cancerous epithelial cells [37] and
(b) the tremendous intra-tumor heterogeneity, which
cannot be categorized in a fundamentally meaningful way
[38]. Our current study evaluates whether quantitatively
analyzing the whole slide, dubbed whole slide image (WSI)
analysis [39] has prognostic and predictive value with
respect to the recurrence prediction for DCIS.
In the retrospective study presented herein, we deve-

loped a machine learning-based image analysis pipeline,
identified prognostically relevant features obtained from
the texture of H&E slides [40], and designed a novel clas-
sification approach to predict 10-year recurrence risk in
DCIS patients treated with breast-conserving surgery
(BCS) (Fig. 1). Finally, to validate the prognostic value of
this approach, and investigate its generalizability, the
model was tested on a cohort of high-grade-only patients,
traditionally seen as a high-risk group for recurrence [41].

Methods
Study population
The study population was obtained from patients diag-
nosed at Nottingham City Hospital (DCIS case series),
spanning the period from 1989 to 2012. The training
cohort comprised slides from 159 patients (127 of whom
had multiple tumor blocks yielding a total of 335 slides);
these slides were used for the model development (Table 1)
and training. A further 185 patients (9 of whom had
multiple slides, yielding a total of 199 slides) comprised an
independent validation cohort for the recurrence risk
classifier (Table 1). Patients included in this study were
exclusively those presenting with pure DCIS (without any
invasive component/tumor in the primary biopsy whether
ductal, lobular, or any special type), without bilateral dis-
ease, and treated with BCS, rather than mastectomy. The
DCIS classification was initially identified through patho-
logical records and further verified through a review of
slides by 2 pathologists (IMM and MST). Details on clini-
copathological variables including the size, tumor grade
(classified according to the three-tier nuclear grading
system [42]), comedo necrosis (defined as the presence of
central acellular necrosis with nuclear debris), and final
margins; demographic information; and follow-up data/re-
currence status were retrospectively obtained from patient
medical records and validated by pathologists (IMM and
MST). Post-BCS, patients at Nottingham were screened
once a year until their 5th year, after which they were
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followed up every 3 years. Recurrence-free survival (RFS)
was calculated from the date of pathologic diagnosis until
the first ipsilateral breast local recurrence or last follow-
up. Local recurrence (either invasive or DCIS) was con-
sidered as an event. Cases with contralateral recurrences,
or those who developed a second lower-grade tumor, were
treated as censored at the time of development to avoid
mixing the recurrences with new primaries.

Tumor slide selection
All diagnostic slides, from the lumpectomy surgical sam-
ple, for each patient were pathologist-reviewed (IMM and
MST), and the best representative (to ensure the presence
of adequate tumor tissue for analysis, morphological
variation, and to confirm the pure DCIS diagnosis)
formalin-fixed paraffin-embedded (FFPE) tumor blocks
(donor) for each patient’s specimen were retrieved and
included in the study. A fresh full-face section of 4 μm
thickness was cut from each selected block, stained with
H&E to standardize the consistency of staining quality,
and again pathologist-reviewed (IMM and MST). Slide

scanning was performed with a slide scanner using a × 40
magnification objective lens (0.24 μm/pixel) (Pannoramic
250 Flash III, 3DHISTECH) (Additional file 1: Supple-
mentary methodology). Images were viewed at a maximum
of × 400 magnification using a built-in functionality of
image processing software (ImageScope, ver. 12.3.2.8013,
Leica Microsystems). The slides were reviewed for image
quality, those with out-of-focus areas re-scanned, and those
with folded over tissues removed from the analysis.

Automated full-slide annotation
OpenSlide software [43] allowed for 4× down-sampling of
the full slides for computational feasibility. A simple
graphical user interface (GUI) was developed to manually
select and extract 50 × 50 pixel, pathologist-identified,
“ground truth” image tiles from our training cohort, for
training our annotation classifier to identify stroma,
benign epithelial ducts (including normal breast paren-
chyma elements, epithelial hyperplasia, and other non-
malignant epithelial changes), cancerous ducts, stromal
regions with dense immune infiltration (immune cells

Fig. 1 WSI method for stratifying DCIS patients based on their recurrence risk. The first step in this pipeline automatically annotates the patient’s
whole surgical H&E slides into prognostically informative tissue classes. For this automated annotation, the patient’s whole virtual slide is (a)
preprocessed through whole-slide color normalization and down-sampling followed by (b) a sliding window, over the whole slide, which extracts
non-overlapping image tiles which are then (c) color deconvoluted to yield the hematoxylin image from which (d) values for 166 texture
features are extracted. These features are then (e) input into a random forest annotation classifier which (f) outputs a probability of each tile
belonging to a specific class (malignant ducts of DCIS, surrounding the breast parenchyma/ducts, blood vessels, and stromal regions with and
without dense immune infiltration [immune cells occupying at least 50% of the tile area]) which are combined to produce (g) a whole-slide
annotation. The second step extracts tissue architecture features and features of the spatial relationship between these tissue classes, from the
previously annotated slides, and compiles them into what serves as the “full-slide” feature set. For the prediction of DCIS recurrence risk, (h) each
annotation is analyzed through (i) feature distributions, spatial features which compare distances between different classes, and other features
such as region confidence. (j) The final (optimized) feature list, alongside the patient’s follow-up (recurrence) data as the labels, is used to train a
(k) random forest recurrence risk classifier to predict (l) high versus low risk of recurrence and allows for the recommendation of optimal therapy
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occupying at least 50% of the tile area), and blood vessels
(Additional file 2: Figure S1). The regions which fell out-
side these classes (such as areas of fat), or slide areas that
were non-tissue, were given a background classification.
An effort was made to select non-mixed-class (mutually
exclusive) ground truth regions, which were completely
surrounded by the pathologists’ manual annotation, with
occasional edge cases (such as intersections of classes)
being labeled by the predominant class in the image tile.
Each 50 × 50 pixel image tile used was color normalized

to a standard H&E staining distribution [44] to account
for specimen and staining variability and to improve clas-
sifier performance [45]. The normalized image tiles were
then color deconvoluted [46] into separate hematoxylin
and eosin channels through an optical density matrix
which contains the relative absorbance of each stain in the
RGB color channel (Additional file 3: Table S1). A total of
166 texture features (Additional file 4: Table S2) were
extracted from the deconvoluted hematoxylin (nuclear
stain) channel for training the random forest annotation

Table 1 Patient characteristics

Clinicopathologic characteristics of patients in the training and validation cohorts

Baseline characteristic Training cohort (N = 159) Validation cohort (N = 185) Difference (p value)

Patient age

Median age (range), years 57 (30–83) 59 (36–77) 0.30

Age < 50, n (%) 26 (16.3) 23 (12.4)

Age ≥ 50, n (%) 133 (83.7) 162 (87.6)

Menopausal status, n (%)

Pre 31 (19.5) 29 (15.7) 0.35

Post 128 (80.5) 156 (84.3)

Presentation, n (%)

Screening 85 (53.5) 120 (64.9) 0.03

Symptomatic 74 (46.5) 65 (35.1)

Comedo necrosis, n (%)

No 60 (37.7) 34 (18.4) < .0001

Yes 99 (62.3) 151 (81.6)

Radiation, n (%)

No 117 (73.6) 145 (78.4) 0.30

Yes 42 (26.4) 40 (21.6)

Grade, n (%)

1 25 (15.8) 0 (0.0) < .0001

2 24 (15.2) 0 (0.0)

3 109 (69.0) 185 (100.0)

Margins, n (%)

Negative 154 (97.5) 183 (98.9) 0.31

Positive 4 (2.5) 2 (1.1)

Tumor size

Median tumor size (range), cm 1.7 (0.1–14.5) 1.7 (0.2–12.0) 0.74

Size < 2.0, n (%) 88 (56.4) 101 (55.6)

Size ≥ 2.5, n (%) 68 (43.6) 84 (45.4)

Survival status, n (%)

Alive 109 (68.6) 159 (86.0) 0.00

Dead 50 (31.4) 26 (14.0)

10-year recurrence status, n (%)

Recurrence free 128 (80.5) 159 (85.9) 0.18

Recurred 31 (19.5) 26 (14.1)

Descriptive data detailing the training and validation cohort’s clinicopathological variables. The cutoff point for positive margins was 2 mm. In the
training cohort, the tumor size of 3 cases was not known and a patient has missing data for margin status and grade. The proportional difference of
clinicopathological variables are measured with the chi-square test
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classifier. To reduce the same slide bias, testing of the
classification ability was performed on a slide-based leave-
one-out cross-validation. Each held-out set of image tiles
used for testing was composed of (pathologist-annotated)
ground truth regions from single individual slides, such
that the test fold always consisted of extracted image tiles
from a slide which was not used in training. The classifier
was retrained with increasing tile N numbers in the train-
ing sets, until the cross-validated test set accuracy leveled
off. To take into account the rotational invariance of the
data (all of the image tiles have the same label regardless
of the angle), and increase the size of the dataset, without
decreasing the quality [47], we augmented the training
image tiles by fourfold, by performing diagonal flipping,
90° rotation, and the combination of the two, on all training
tiles. Tissue features extracted from the augmented set of
image tiles were used to train a random forest classifier
[48] for tissue annotation on the slide class (development
depicted in Additional file 5: Figure S2A). The output of
this random forest was the probability of the input image
tile belonging to each of the five classes with the final
assigned annotation determined by the highest probability.
Full slides being processed by the WSI pipeline (i.e.,

slides that were not previously used for training the
annotation classifier) were annotated through a grid
approach wherein adjacent non-overlapping 50 × 50 pixel
image tiles (that made up the full slide) were processed
(Fig. 1 (A/B/C)), as previously detailed for the training
data, their features input into the trained random forest
(Fig. 1 (D/E)), and the classified image tiles stitched
together (Fig. 1 (F/G)). Additional post-processing, using
neighborhood voting, was performed only for the analysis
of spatial features (see the next section). In this approach,
the class assigned to a region was amended if the sum
of all its direct neighbors’ tree classifications resulted in
a larger proportion vote for a different annotation
(Additional file 6: Figure S3 shows an example).

Full-slide feature optimization and recurrence prediction
Following the automated slide annotation, a set of distinct
full-slide features can be extracted (Fig. 1 (I); Additional file 7:
Table S3). The majority (99%) of these features consist of
statistical moments (Additional file 8: Figure S4) of the 166
texture features for each annotated class and provide in-
formation on the shape of the texture feature distribution
for that class. Additionally, spatial features were derived that
related the distance and size of cancer to either the blood
vessels or immune-rich stroma, as the literature suggests
that both these spatial relationships have prognostic rele-
vance (Additional file 9: Equation S1) [36, 49]. Finally, the
proportions of each class, such as the amount of tumor on
a slide (a quantity commonly calculated in cancer staging),
and average annotation confidence (calculated by averaging
the number of trees which voted for each annotated class,

such that low values would be given if there was a large
ambiguity for any annotation on that slide) were included
as features. To reduce data dimensionality and improve
training time and prediction accuracy [50], a feature re-
duction step was performed. First, we selected a maximum
follow-up time point past which a patient will be right
censored and considered as a non-recurring patient
(Additional file 1: Supplementary methodology). For
the selected follow-up time, we filtered and sequentially
selected the list of candidate features within multiple
machine learning models, trained with uniform (equal)
prior class probabilities, and used patient recurrence
status as the input label, to build an optimized classifier
(Fig. 1 (J); Additional file 1: Supplementary methodology).
The performance of this final DCIS recurrence risk classi-
fier model was then examined univariately through
Kaplan-Meier curves (Fig. 1 (K/L)). This model outputs a
prognostic risk on a slide level. For the patients with
multiple slides (n = 127 in this cohort), if any of their slides
were classified as high risk, those patients were given a
high-risk classification (Additional file 10: Figure S5). For
comparison, we performed a separate analysis wherein we
omitted these patients to test if the model performance
suffered. The development of this full slide classifier is
depicted in Additional file 5: Figure S2B.
To test the feasibility of a continuous metric, we sepa-

rately (a) used the trained random forest class probability
output (which signifies the proportion of trees voting for a
class, e.g., recurrence), rather than the corresponding
binary (high versus low risk, normally split by the majority
vote of the aforementioned proportion) classification, and
(b) trained a random survival forest (RSF) [51, 52] that
provided each patient a “risk score” which was equal to
1—the RSF’s output survival function for that patient.

Comparison of recurrence classifier accuracy with or
without inclusion of standard clinicopathologic variables
To evaluate if our final model provides an advantage over
DCIS recurrence risk prediction using available clini-
copathologic parameters (comedo necrosis, size, grade,
surgical margins, and patients age), we (a) performed mul-
tivariable Cox proportional hazard regression analysis using
these clinicopathologic variables as covariates and (b)
concatenated the clinicopathologic variables to the 8 (opti-
mized) features in our model and assessed the performance
of this expanded machine learning model, and the import-
ance of each variable to the overall prediction accuracy of
this model, via a variable permutation approach.

Prediction of DCIS recurrence risk in the context of
different adjuvant therapies
We then evaluated our final model’s ability to predict
DCIS recurrence risk among patients who (a) were diag-
nosed as having high-grade DCIS (due to the clinical
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relevance), (b) were treated with BCS alone, and (c)
received adjuvant radiotherapy after BCS. The risk of in-
vasive recurrence was also analyzed within the classified
patient risk groups.

Recurrence classifier validation
To validate the recurrence classifier’s significant prognostic
ability, we applied it to a second independent cohort of
BCS-treated patients diagnosed with high-grade pure DCIS.
The final feature-selected recurrence risk classifier model
and pipeline, as previously trained for both annotation and
recurrence classification, was used on 199 slides (of 185
patients, which were not included in the training cohort).
The patients predicted by the model to be in the high-risk
subgroup were compared with patients predicted to be in
the low recurrence risk subgroup through survival analysis
(Kaplan-Meier and Cox regression) of their 10-year re-
currence outcomes (Additional file 5: Figure S2C).

Statistical analysis
Statistical analysis was carried out with SAS 9.4 software
(Cary, NC, USA), MATLAB R2017b (Natick, MA, USA),
the Python programming language (Python Software Foun-
dation, https://www.python.org/), and R (R Foundation for
Statistical Computing, Vienna, Austria, http://www.R-pro-
ject.org/). The significance of the texture feature diffe-
rences between annotated classes was analyzed with an
analysis of variance (ANOVA) with a post-hoc Tukey-
Kramer procedure. Two-tailed t tests were used during the
initial stage of feature selection and for comparing the
significance of the continuous metric values. The accuracy
metric was calculated as the sum of true positives (TP) and
true negatives (TN) divided by the total observations. The
“positive” class in the recurrence analysis comprised
patients who experienced recurrence within 10 years of
diagnosis, and the “negative” class was composed of
patients who were censored. True-positive (TP) patients
were those in the high-risk group who indeed experienced
recurrence. True-negative (TN) cases were those in the
low-risk group who were censored. False-positive (FP)
patients were recurrence-free patients in the high-risk
group, and false-negative (FN) patients were patients
classified as low risk who recurred. Additional confusion
matrix performance metrics used were sensitivity (Sn: TP/
(TP + FN)), specificity (Sp: TN/(TN + FP), positive predict-
ive value (PPV: TP/(TP + FP)), negative predictive Value
(NPV: TN/(TN + FN)), and odds ratio (OR: (TP/TN)/(FN/
TN)). The accuracy for the training recurrence classifiers
was ascertained through the average of 100 repeated five-
fold cross-validation, with confusion matrices chosen from
the combined testing folds of one of the repeats. When
analyzing the invasive or DCIS recurrence separately,
patients who experienced DCIS or invasive recurrence
were treated as censored. For the training cohort, both the

Kaplan-Meier survival analysis and the subsequent multi-
variate analyses were performed on the fivefold cross-
validated data with risk classification groups taken from
the cross-validated test sets [53] and significance deter-
mined using the log-rank test and Wald chi-square test,
respectively. Mean recurrence-free survival estimates were
calculated by taking the area under the survival curves
[54]. Comparisons between the clinicopathological pro-
portions of training/testing and the validation cohort were
carried out through a chi-square test. Multivariate analysis
was controlled for comedo necrosis, size, grade, age, and
the surgical margin status. Model fit was compared
through the Akaike Information Criterion (AIC) [55], a
measure of goodness of fit/efficiency within the Cox
regression statistical model. The lower the AIC value, the
better the likelihood. Model discrimination ability was
analyzed through the Harrell’s c-statistic [56] using a SAS
macro [57]. Feature importance within the RF model that
included standard clinicopathologic variables concatenated
with the features in our recurrence classifier was deter-
mined through 100 iterations of the out-of-bag variable
permutations in which the average increase in prediction
error, for each variable whose value was permuted, was
calculated for the out-of-bag observations [48]. For fitting
and optimizing the survival forest model, the R package
“randomForestSRC” [58] was used. When necessary,
dichotomization of continuous features was performed by
identifying an optimal outcome-based threshold [59]. To
facilitate visualization of hazard ratios for continuous
variables, z-score transformation of features was used.

Results
Traditional clinicopathological factors have limited DCIS
recurrence risk predictive ability
The major clinicopathological characteristics for the
cohorts of DCIS patients used to train and validate our
model are shown in Table 1. For the training cohort, while
the recurrence rate was low (23%), the majority (84%) of
recurrences occurred within the first 10 years of follow-up
(Additional file 11: Figure S6). Patients were mostly
high-grade (69%), post-menopausal (80.5%), older than
50 (83.7%), and did not receive radiotherapy (73.6%).
Additionally, almost all patients had a complete excision
with wide (> 2mm) negative margins (97.5%). Within this
training cohort, aside from an increased prevalence of
high grade, patients who developed recurrence did not
have any significant differences in the proportions of
standard clinicopathological variables compared to
patients who remained recurrence-free (Additional file 12:
Table S4). The validation cohort consisted of only high-
grade (3) patients, but otherwise differed from the training
cohort with higher rates of comedo necrosis (81.6%,
p < 0.0001), and a slightly higher proportion of patients
presenting at screening (64.9%, p = 0.0316) (Table 1).
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Within this validation cohort, only radiation has a signifi-
cant proportional difference between patients who deve-
loped recurrence and those who did not
(Additional file 13: Table S5).

Texture features differentiate significantly between
annotated tissue regions
To develop a pipeline for automated annotation of various
clinically relevant regions within DCIS tumor tissue sec-
tions, we found that the overall accuracy leveled off at 10,
359 50 × 50 pixel ground truth image tiles (Add-
itional file 14: Figure S7) from 32 training cohort slides.
For developing the final annotation classifier, these ground
truth areas were augmented (using rotation/transposition)
to a total of 41,436 (Fig. 2a). Using the original (non-aug-
mented) collection of ground truth regions, we observed
that the majority of our texture features possessed signifi-
cant discriminatory ability between all annotated class
combinations (Fig. 2b). The classes with the most discrim-
inatory texture features between them were cancer versus
stroma (96% of features had a p value < 0.05). By contrast,
texture features had the least discriminating power when
it came to distinguishing stroma from the blood vessels
(only 80% of features were significant). Cross-validation of
the unaugmented ground truth collection resulted in an
accuracy of 84.59%, with individual class distinction accu-
racies, not counting background, ranging from 75.8 to
90.5% (Fig. 2c) (with additional performance metrics
shown in Additional file 15: Table S6).

An eight-feature recurrence classifier significantly predicts
recurrence risk
Thresholding at a 10-year follow-up maximized the num-
ber of significant whole-slide features different between
slides from patients who recurred versus those that did
not progress (Additional file 16: Figure S8A). This follow-
up time is also consistent with many follow-up times in
clinical studies [60] and with the fact that most DCIS pa-
tients recur within 10 years. Overall, around 1238 (37%)
whole-slide features differed significantly (p < 0.05) with a
10-year follow-up as compared to at most 25% for 5-, 15-,
and 20-year follow-up time points.
Testing 10-year recurrence risk model built with these

filtered features (i.e., using all significant features prior to
the sequential removal step in Fig. 1 (J)) resulted in an
average fivefold cross-validated accuracy around 80%, re-
gardless of the ML model (Additional file 17: Table S7) and
a random forest high-risk group possessing a hazard ratio
of 3.19 (Fig. 3a), almost equivalent to the performance of
using the full feature set (accuracy 80.8%; HR 3.13). Inter-
estingly, among the filtered whole-slide features, the major-
ity (88%) stemmed from non-cancer annotations and only
1% came from the differences in lymphocyte-dense proper-
ties between patients (Additional file 16: Figure S8B).

Choosing the most prognostic variables through the
sequential forward selection, though, resulted in half of the
features being derived from cancer areas (Fig. 3b with add-
itional feature details in Additional file 18: Table S8). The
final 8-feature model lowered the misclassification rate to
0.101, achieved an average (of 100 iterations) cross-
validated accuracy above 86%, and yielded a model that
robustly stratified the DCIS patients in our training cohort
and identified a high-risk group with 8.5× higher recur-
rence risk by 10 years (Fig. 3a). Figure 3c illustrates a
typical Kaplan-Meier survival curve from one of the model
training iterations (out of the total 100) of the combined
cross-validated test sets. The slides classified into the high-
risk group carry a recurrence-free survival (RFS) of only
24% compared to the 90% seen in the low-risk group.
To show the importance of the initial machine learning an-
notation step (Fig. 1 (A–G)), a “non-annotated” RF model
built (with feature selection) without utilizing the annota-
tion classification (simply using the overall texture
statistical moments of all the areas of the slides) resulted in
a significantly lower accuracy (79%) and HR (2.82)
(Additional file 17: Table S7).
The eight features selected for the final model, when

evaluated as continuous variables in univariate analysis,
all provided significant prognostic value, with half being
associated with a higher risk of recurrence and the other
half providing a protective effect (Fig. 3d). Dichotomizing
patients into groups using the two mean cancer features
(consisting of feature #1 and #3, as the mean moment and
cancer annotations are the most intelligible combination
for texture-based analyses), for interpretive purposes,
showed conflicting effects. Alone, feature #1, calculates
the hematoxylin staining, or blue color intensity, per pixel
(or point) within the malignant ductal profile areas (above
a certain Otsu method autogenerated threshold [61])
(Fig. 4a–d), very significantly stratified patients into two
distinct risk groups (Fig. 4d), while feature #3 was unable
to do so (Additional file 19: Figure S9A). However, if
patients were first split into high- and low-risk groups
through feature #1 (Additional file 19: Figure S9B)
followed by another stratification using feature #3, a sig-
nificant difference in survival between the two subgroups
was increased when compared to the stratification by fea-
ture #1 alone (Additional file 19: Figure S9C), showing the
dependency of variables for maximizing prognostic rele-
vance (high-risk group HR for feature #1 alone = 3.017,
high-risk group HR for features #1 + #3 = 7.308).
Applying the recurrence classifier based on the final

eight features at the patient level showed that the classi-
fier significantly stratified the patients in the training co-
hort (p < 0.0001). Patients classified to the high-risk
group (N = 34) had an RFS of only 35% (with a mean
recurrence-free time of 72months), compared to the 93%
(mean recurrence-free time of 110months) seen in
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Fig. 2 Full-slide annotation. a List of annotation classes used, and representative examples, alongside the number of ground truth regions available to develop
the texture-based annotation classifier. b Multivariate-adjusted p value (Tukey-Kramer) distributions for all 166 features (as points) between all annotated class
comparisons. Reference dotted line indicates an adjusted p value of 0.05, with features possessing the significant discriminatory ability (p values < 0.05) situated
on the left of it and summarized alongside. c Confusion matrix (which quantifies the performance of the class annotation model) comparing the training
ground truth data to the cross-validated annotation classifier test set outputs. The analysis was performed on the original regions before fourfold augmentation
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patients in the low-risk group (N = 125) (Fig. 5a). This sig-
nificant stratification remained even if the analysis was
performed after omitting patients with discordant slide
classifications (Additional file 20: Figure S10). This iter-
ation had a univariate high-risk hazard ratio of 11.6 and
retained its very high significance when controlling for ne-
crosis, size, grade, margins, radiation therapy, and patient
age (Fig. 5b). None of the clinical variables in the original
cohort showed significant risk stratification ability in
multivariate analysis, although grade was significant uni-
variately (Fig. 5b and Additional file 21: Figure S11).
Moreover, the model provided a superior c-index (0.77),
model fit (AIC = 239.8) (Additional file 22: Figure S12),

accuracy (0.87), specificity (0.91), PPV (0.65), NPV (0.93),
and OR (23.6) (Table 2) to the clinical variables. However,
the model produced a lower sensitivity (0.71) compared to
grade (0.74) and age (0.77). Additionally, select clinical
variables neither improved the overall model nor add any
prognostic relevance individually (Additional file 23:
Figure S13). Notably, the same model was able to signifi-
cantly stratify high-grade DCIS patients (Additional file 24:
Figure S14A), low/intermediate-grade DCIS patients
(Additional file 24: Figure S14B), the subset of all patients
who received adjuvant radiation therapy, and all patients
treated with BCS alone (Additional file 24: Figure S14C
and D) into the subgroups with high and low recurrence

Fig. 3 Full-slide feature selection for the development of recurrence classifier. a The change in model accuracy and high-risk group hazard ratio
with the sequential addition of features. The reference hazard ratio and accuracies, based on the model with all features, are shown in red and
blue horizontal dashed lines, respectively. The model which included all filtered features (Sig*: p < 0.05) is also shown for comparison. Bars on
markers indicate 95% confidence intervals. b General feature descriptions, and the annotations from which they stem from, of the final 8-feature
recurrence classification model. c Kaplan-Meier curves showing stratification of patient slides by the final recurrence classifier model. Data shown
is based on the slides used for the training cohort, wherein the test sets for each selected cross-validated iteration were combined. Significance
was measured using the log-rank test. d Univariate HR of the selected features, z-score transformed for illustrative purposes. All variables are
significant, and blue horizontal lines depict 95% confidence intervals. The fact that none of the confidence intervals cross the HR = 1.0 reference
line shows that these features are highly and unequivocally significant
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risks. Additionally, the model was able to identify patients
at high-risk for both invasive (Additional file 25: Figure
S15) and DCIS recurrence (Additional file 26: Figure S16),
even when controlling for clinicopathological variables.
Transforming the binary classification of the model to a
continuous measure, equaling the proportion (multiplied
by 100) of trees which voted for the “recurrence” class,
resulted in a significantly higher (p < 0.0001) average score
for slides which came from patients who recurred within

10 years (45.8) versus those who did not (21.6)
(Additional file 27: Figure S17A). Similarly, producing a
continuous metric, through training an RSF using the
selected eight features, produced an average score of a
slide from a patient who eventually recurred (34.3) that
was significantly higher (p < 0.0001) than those who did
not (19.3) (Additional file 27: Figure S17B). Additionally,
both continuous models provided prognostic significance
(p < 0.0001), with a unit increase of class probability
providing incremental 5.6% higher 10-year recurrence risk
and a 5.1% increase through the RSF (Additional file 28:
Table S9).

Validation study confirms prognostic value of the eight-
feature recurrence risk classifier
We proceeded to validate our eight-feature DCIS recur-
rence risk prediction model in an independent validation
cohort of DCIS cases (n = 185 from Nottingham Univer-
sity Hospital). Analyzing individual slides (treating each
slide as an individual patient) using our previously
trained eight-feature classifier resulted in highly sig-
nificant stratification of the validation cohort into
high- and low-risk groups with regard to their RFS
(Additional file 29: Figure S18). A patient-wise analysis
led to further improvement in recurrence risk prediction.
Ninety-two percent of patients classified into the low risk
stayed recurrence-free for 10 years (mean recurrence-free
time of 112months), compared to only 54% (mean recur-
rence-free time of 73 months) for patients who are
classified as high risk (Fig. 6a). Removing patients
with discordant cases did not adjust the model stratifica-
tion (Additional file 30: Figure S19). While lower than the
training/test cohort, the univariate hazard ratio of this
classifier on the validation cohort patients is 6.4 (p <
0.0001) and over 6.8 (p < 0.0001) when controlling for ne-
crosis, size, margin status, and age (Fig. 6b). Once again,
the model provided superior concordance (c-index = 0.69),
model fit (AIC = 243) (Additional file 31: Figure S20), and
most traditional 2 × 2 performance metrics (Acc = 0.85,
Sp = 0.91, PPV = 0.46, NPV = 0.92, OR = 9.6) (Table 2), as
compared to the clinicopathological variables, but had
lower sensitivity (0.5) compared to age (0.92) and necrosis
(0.77). Even though this validation cohort had very few
patients recurring after radiotherapy, the eight-feature
recurrence risk predictive model was able to signifi-
cantly predict long-term outcomes after radiotherapy
(Additional file 32: Figure S21A). Additionally, a clear
high-risk subgroup was identified among patients
treated with only BCS (Additional file 32: Figure S21B).
Censoring the eight patients whose recurrence was DCIS
(rather than invasive disease) resulted in a robust identifi-
cation of patients at high risk of recurrence as invasive
disease, regardless of other clinicopathological variables
(Additional file 33: Figure S22). Furthermore, although the

Fig. 4 Interpretation and prognostic relevance of the most prognostic
feature in our eight-feature DCIS recurrence risk prediction model. a
An example “cancer” region with a cribriform architecture in an H&E-
stained slide (prior to deconvolution). b The region shown in a after
hematoxylin deconvolution. c Intense hematoxylin staining (relative to
the image tile section) is represented by a gray-level intensity of 1,
while no staining is depicted by a gray-level value of 255. The adaptive
Otsu thresholds by progressively using a higher threshold. Therefore, if
the cancer region has lumens, it would yield a higher average intensity
(more white pixels) as compared to a solid pattern (no white pixels).
Using an optimized threshold of 208, it is observed that full slides
whose cancer regions have an average feature #1 above that cutoff
recur significantly less than patients below that threshold (d)
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number of events was limited, the model significantly
identified a group at high risk of DCIS recurrence
(Additional file 34: Figure S23). Using this model’s con-
tinuous class probability showed a significantly higher
proportion of recurrence voting trees (45.8) for patients
who eventually had 10-year recurrence versus those that
did not (26.8) (Additional file 5: Figure S2A). This score
was significantly prognostically (p < 0.0001), providing
3.6% incrementally increase risk for 10-year recurrence
(Additional file 28: Table S9).
Equivalently, using an RFS model for continuous risk

also resulted in a significant (p = 0.0358) hazard ratio
(HR = 1.05 per unit increase) (Additional file 28: Table
S9). However, while the mean slide score (44.6) for a
recurred patient slide was statistically significantly
higher (p = 0.0355) than a slide from a patient who
does not recur (42.0), this difference was much smaller
than the difference in scores observed between the re-
curred and non-recurred slides in the training cohorts
(Additional file 5: Figure S27B). Furthermore, the average
scores of the RFS model on the validation cohort were

both much higher than the average scores in the training
cohort (p < 0.05) (Additional file 5: Figure S2B).

Discussion
Limited understanding of the progression of pre-invasive
ductal lesions to invasive ones and lack of clinicopatho-
logical [62] and molecular markers [12], which can pre-
dict recurrence, lead to uncertainty in therapeutic
decision-making. Without a confident measure of re-
currence risk, patients are often at risk for over- and
under-treatment [41]. The aim of this study was to
develop a novel image analysis pipeline which could
predict the 10-year ipsilateral recurrence risk in DCIS
patients treated with BCS. We also show that our
approach of class-annotating slide regions prior to feature
extraction for recurrence prediction enhances our model’s
performance. While the increase in the accuracy from
using an annotation step was only moderate, the hazard
ratio, and therefore prognostic value, increase was sub-
stantial. Additionally, this initial annotation classification
enables better interpretation of the features that our

Fig. 5 Univariate and multivariate analysis of the eight-feature DCIS recurrence risk prediction model on the training cohort. a Fivefold cross-
validated Kaplan-Meier curves of the training cohort. Significance is measured using the log-rank test, and the gray line represents the unstratified
full cohort. b Univariate and multivariate Cox regression analysis comparing the influence of common clinicopathological variables
alongside the eight-feature recurrence risk prediction model for recurrence-free survival, on the training set (after fivefold cross-validation)
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model uses for recurrence prediction; this is particularly
important given that with machine learning approaches, it
is often difficult to understand why the trained model re-
sponds in a particular way to a set of input data. It would
be interesting to test whether adding more classes leads to
an improved performance of the model.
Predictably, most of the features selected for the final

recurrence classifier model originate from tumor regions,
whose cells show both gross morphological changes and
nuclear alterations, such as deviations in heterochromatin
[63]. The patterns and distribution of hematoxylin within
cancer could reflect changes in both ductal architecture
and cellular cytological features, both long mainstays of
DCIS grading [64–71], and can be continuously quantified
[30]. The surrounding stroma is composed of a col-
lection of many varied cell types that also produce
diverse hematoxylin staining patterns. Fibroblasts [34]
and myofibroblasts [72], for example, have both been im-
plicated in DCIS invasion and recurrence and provide dis-
tinct hematoxylin distributions. As fibroblasts are rich in
rough endoplasmic reticulum, they would be much more
basophilic [40] and demonstrate different hematoxylin
staining patterns compared to myofibroblasts. It should be
noted, as a limitation, that the stroma is the principal area
where the addition of eosin deconvolution into our

pipeline would perhaps improve model performance due
to stromal collagen diffusion and densities. Thickening of
the ECM, through fibrous deposits such as collagen,
promotes cancer progression [73], and since collagen is
eosinophilic, its distribution and texture features would be
best quantified with the eosin stain.
Benign epithelial ducts and blood vessels both provide

a single feature towards the final recurrence classifier
model. These classes’ relative deficiency of selected
features can perhaps be due to the limitations for this
annotation within the pipeline and/or these regions not
being as prognostically informative as compared to
cancer or the surrounding stroma. Vascular hetero-
geneity has a varied impact on breast tumor progression
[74]. It is possible that this prognostic value is being
harnessed through our recurrence classifier. However,
our choice of H&E slides limits us to only studying the
texture of the vessels containing visible red blood cells
within a relatively large section (image tile); a smaller
sliding window would perhaps uncover smaller, but rele-
vant, vascularization. It is interesting that a feature of
benign epithelial ducts was included in our final re-
currence classifier. As our use of the “benign epithelial
duct” annotation is inclusive of everything but DCIS, it
is possible that potentially prognostic information

Table 2 Model performance

Model and Clinicopathologic Variables 2x2 Performance Metrics

Training Cohort Validation Cohort

Variable Rec. Status at 10 Years Metrics Rec. Status at 10 Years Metrics

Model Censored Recurred Acc: 0.87 PPV: 0.65 Censored Recurred Acc: 0.85 PPV: 0.46

Low Risk 116 9 Sn: 0.71 NPV: 0.93 Low Risk 144 13 Sn: 0.50 NPV: 0.92

High Risk 12 22 Sp: 0.91 OR: 23.6 High Risk 15 13 Sp: 0.91 OR: 9.60

Necrosis Censored Recurred Acc: 0.41 PPV: 0.18 Censored Recurred Acc: 0.26 PPV: 0.13

No 47 13 Sn: 0.58 NPV: 0.78 No 28 6 Sn: 0.77 NPV: 0.82

Yes 81 18 Sp: 0.37 OR: 0.80 Yes 131 20 Sp: 0.18 OR: 0.71

Size Censored Recurred Acc: 0.50 PPV: 0.15 Censored Recurred Acc: 0.49 PPV: 0.10

Below 68 20 Sn: 0.33 NPV: 0.77 Below 83 18 Sn: 0.31 NPV: 0.82

Above 58 10 Sp: 0.54 OR: 0.59 Above 76 8 Sp: 0.52 OR: 0.49

Age Censored Recurred Acc: 0.27 PPV: 0.18 Censored Recurred Acc: 0.24 PPV: 0.15

Below 19 7 Sn: 0.77 NPV: 0.73 Below 21 2 Sn: 0.92 NPV: 0.91

Above 109 24 Sp: 0.15 OR: 0.60 Above 138 24 Sp: 0.13 OR: 1.83

Radiotherapy Censored Recurred Acc: 0.64 PPV: 0.19 Censored Recurred Acc: 0.66 PPV: 0.05

No 94 23 Sn: 0.26 NPV: 0.80 No 121 24 Sn: 0.08 NPV: 0.83

Yes 34 8 Sp: 0.73 OR: 0.96 Yes 38 2 Sp: 0.76 OR: 0.27

Grade Censored Recurred Acc: 0.41 PPV: 0.21 *

I/II 41 8 Sn: 0.74 NPV: 0.84

III 86 23 Sp: 0.32 OR: 1.37

The 2 × 2 confusion matrix and performance metrics for the 8-feature model and common clinopathological variables in the training and validation cohorts. For
each variable, the positive condition was recurrence within 10 years. A 2 × 2 matrix for grade in the validation cohort was omitted due to all patients belonging to
grade III. Margin status was not shown for either cohort due to almost all patients having negative margins. The threshold used for patient age was 50 years, and
the threshold for size was 2 cm
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inherent in regions containing abnormal malignancy pre-
cursor cells is being captured by our feature. Proliferative,
non-cancerous alterations such as columnar cell lesions
often co-occur with DCIS, suggesting their potential for
malignant transformations and can be used as a marker
for BC risk [75]. Importantly, these premalignant regions
could also possess variation in hematoxylin staining
patterns. For example, usual ductal hyperplasia [37]
characteristically shows nuclear pseudo-inclusions [76],
which would show a unique hematoxylin texture pattern.
As the distinction between some benign areas and low-
grade DCIS is not clear [77], with potentially similar histo-
logical and nuclear features, it comes as no surprise that
benign epithelial ducts and cancer duct annotations had a
level of uncertainty. Further testing to differentiate anno-
tations between non-benign and benign regions might be
advisable to see if this distinction can glean additional
prognostic and interpretable value. Immune-rich regions
were notably absent in both filtered features and the final
model, likely due to the immune dense areas of lympho-
cyte infiltration not possessing significant variability in cell
and nuclear morphology [78].

Based on the hematoxylin texture distribution of these
annotated regions, our model consists of some features
that are perhaps amenable to logical interpretation in
terms of disease biology, and some that elude obvious
explanation; yet, both types are useful prognostically.
Interpretable texture features can correlate with ac-
cepted pathological principles, such as histology, and
allow for a continuous, quantifiable, and non-biased
measure which is beyond the capacity of the human eye.
Additionally, they instill more confidence in machine
learning approaches, which often can be considered as
black boxes. On the other hand, texture features and
patterns which may lack discriminatory ability per se
can still provide discriminatory information when their
higher order spatial statistics (e.g., statistical moments) are
considered [79]. These non-visually extractable features
can supplement a pathologist’s visual inspection to provide
additional unbiased prognostic value [80]. Our final full-
slide recurrence classifier model includes both types of
features, with a clear example demonstrated through the
two mean cancer slide-annotated textures (the more inter-
pretable feature #1, and a less intuitively interpretable

Fig. 6 Validation of 8-feature DCIS recurrence risk prediction model in an independent validation cohort. a Kaplan-Meier curves showing a robust
stratification of patients in the validation cohort into high risk of recurrence and low risk of recurrence subgroups. Significance was measured
using the log-rank test, and the gray line represents the unstratified full validation cohort. b Univariate and multivariate Cox regression analysis of
the validation cohort comparing the influence of common clinicopathological variables on the recurrence risk predictive 8-feature model, for 10-
year recurrence-free survival
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feature #3). The most significant feature in the model
(i.e., feature #1) quantifies the average hematoxylin
intensity at a high-end threshold, which broadly re-
presents the underlying average tissue architecture (by
enabling luminal versus more solid areas to be distin-
guished), long shown to have some value predicting
DCIS recurrence [81]. Furthermore, as this feature is a
continuous measurement, it also presents a relative scale
that a more broadly defined architectural pattern (such as
a classification of cribriform architecture) cannot. This
can be especially useful for comparing between mixed
pattern cases, which are often present in DCIS [82] and
underlie inter-observer variability among pathologists
[83]. Our univariate analysis indicated that a lower value
of feature #1 correlated strongly with a higher rate of
recurrence, consistent with the empirical observation that
more solid DCIS cases have poorer outcomes [81] and are
often of higher grade [82]. Feature #3 on the other hand
does not grant such discernable interpretation for our
data. The short runs high gray-level emphasis (SRHGE) is
a second-order texture feature that explains the joint
distribution of spatial arrangement and gray level,
which, notwithstanding, has had previous success in
machine learning algorithms for cancer classification
[84–86]. Interestingly, this feature also presents a
prime example of the dependency of some of these
features within our data and why a tree-based classi-
fier can exploit such a relationship. On its own, fea-
ture #3 did not show significant stratification ability;
however, if used on patients directly after splitting
them into high and low feature #1 groups, we observed a
marked increase in stratification ability. This type of
association is conserved in a tree-based algorithm as
they allow for branching results which depend on
upstream features.
In this study, we used a combination of eight features to

create a machine learning-based model to predict the risk
of DCIS recurrence. Our model demonstrated outstanding
prognostic ability in two independent patient cohorts,
commandingly outperforming traditional histopathological
variables in most traditional performance metrics (accu-
racy, specificity, PPV, NPV, and OR). While some variables
had superior sensitivity (age and grade in the training
cohort and necrosis and age in the validation cohort) to
the recurrence model, and improving these metrics re-
presents an ongoing challenge of the model, these variables
also had much lower PPV, suggesting that being in high
risk in the model still provides much higher discriminatory
ability with identifying patients who develop recurrence.
Additionally, this model was able to create prognostic
groups with over double the hazard ratio of risk groups
created through the commercially available Oncotype
DCIS score [87] and improved concordance to the DCIS
nomogram [24]. In our validation cohort, the model was

able to identify a high-risk group of patients that had
almost a 50% chance of recurring within 10 years
(versus < 10% chance within the low-risk group).
Within the subsets of patients treated with BCS alone

or those receiving additional adjuvant radiation, the re-
currence classifier model also identified patients likely to
recur. Thus, our model can serve as a clinical tool to
help with treatment decisions. For example, high-risk
patients who may have undergone BCS alone might re-
quire more aggressive treatments (such as radiotherapy)
to avert the recurrence. While there is a debate if adju-
vant radiation even provides a significant reduction in
breast cancer-specific mortality for DCIS [88], or if any
observed survival benefit should be attributed to radio-
therapy’s potential systemic effects (as opposed to local
disease control) [89], the impact of radiotherapy on re-
ducing recurrence is significant. Additionally, our model
identifies a low-risk group that has only an 8% 10-year
risk of recurrence even without radiation. This result
compares favorably to the low-risk group identified by
the Oncotype DX DCIS score (10.6% 10-year recurrence
risk) [90] and can suggest de-escalation/elimination of
radiation therapy for this patient subgroup. Thus, our
model offers distinct clinical utility for high-grade pa-
tients (who have a high recurrence risk) as well as prelim-
inary results for low-/intermediate-grade patients.
Clinically, our data has shown some potential in identifying
patients who have a high risk of recurrence even after adju-
vant radiotherapy. Although the sample size is very limited
for this cohort, our findings provide impetus to pursue a
larger study exploring this aspect. Finally, we show very
preliminary results converting the final model to continu-
ous metrics of risk which have some promise to potentially
better stratify the cohorts beyond simply “high” and “low”
risk. Not surprisingly, using the random forest class prob-
abilities, from which the binary distinction is normally di-
vided from (where the class with at least 50% trees in the
random forest voting for it is chosen as the classification
output), provided significant prognostic value, but has to
be studied more in-depth to discern if it is a better metric
rather than the binary classification that is the basis of the
utilized algorithm. Unfortunately, the trained RSF continu-
ous model, which considers the time-till event as well,
seemed to not generalize as well to the validation cohort.
While it did show significant prognostic value, the valid-
ation cohort had significantly higher RFS scores, wherein
even the non-recurrence slides in the validation set showed
much higher average scores than the training cohort recur-
rence slides. Potentially, this model was over-trained to the
training data (and thus performed poorly on a high-grade-
only cohort), was not optimally compatible with the feature
selection methodology used, and/or this cohort and ques-
tion was not ideal for this type of machine learning
technique.
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Our study has a few limitations. The first caveat is that
both the training and validation cohorts originate from
the same institution. Although the recurrence classifier
model is “seeing” samples from patients in the validation
cohort for the first time, the cohorts are likely to share
some features arising from digital image generation
protocols (tissue processing, staining, and imaging).
Additionally, our validation cohort consists entirely of

high-grade patients. This is a potentially substantial limita-
tion as high grade is established as a significant prognostic
variable within our training cohort. Although it is impor-
tant to note that finding a reliable cost-efficient prognostic
variable in high-grade DCIS remains of utmost import-
ance, as radiotherapy currently appears to be overused in
high-grade DCIS compared with the reported lower re-
currence rates, the value of the model in lower-grade
lesions, and the view of safe radiation omission from these
lower-grade patients is a valid question that has to be
validated in a subsequent study.
Besides the differences in grade distributions, there

exist a few other significant variations in the clinopatho-
logical and demographic variables between the two co-
horts (such as necrosis and presentation), although in
neither cohort are these significantly associated to the
future recurrence status. Furthermore, the training co-
hort seemed to experience slightly higher rates of recur-
rence. Although training models generally perform more
optimistically, the higher frequency of recurrence (posi-
tive labels) in the training cohort alongside the
significant differences between classically prognostic clin-
opathological variables, such as grade and necrosis, might
have generated a model which was less fit for the validation
cohort and thus yielded lower performance in this set. Al-
though these differences lend some credibility to the
generalizability of the model, it is clear that further testing,
in additional external cohorts from diverse institutions,
with a variety of outcomes is required and that there might
be value in retraining the model with a more thorough
combined cohort.
Although our model significantly stratified patients who

received radiation, in both the training and validation
cohorts, the sample size is notably small and requires add-
itional testing. Technical avenues for improvement include
combining multiple image resolutions and sliding window
sizes, as we had to balance the slide processing speed
(20× would not be feasible to run a similar analysis
on our current computers) while still preserving the
structural differences that would allow pathologists to
distinguish all annotated classes. An intrinsic limi-
tation of traditional “human-crafted feature-based”
ML is that feature engineering is limited to human
knowledge. Alternatively, a deep learning approach, such
as one involving convolutional neural networks, may be
able to outperform this system and identify novel

morphological signatures even more informative for pa-
tient recurrence risk prediction.

Conclusion
The model presented in this study robustly predicts DCIS
recurrence risk and significantly outperforms traditional
clinicopathologic variables. Simply inputting a scan of an
H&E-stained DCIS tumor slide into this tool would allow
the identification of patients who are at low-risk and likely
do not even require adjuvant radiation and those patients
at such high risk that even more aggressive therapy may
be advisable (such as systemic radiation [89]). Although
this methodology is promising, it requires additional test-
ing with more diverse samples and treatments before any
clinical utility of this pipeline can be unequivocally estab-
lished. Ultimately, our study provides proof of principle
that such a pipeline can predict DCIS recurrence risk; in
future studies, we hope to train this pipeline on images
from core biopsies, as a treatment aware model, to predict
patients’ recurrence risk so that their entire treatment
plan (including the type of surgery and recommendations
regarding radiotherapy) can be tailored based on their
risk profile.
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(sum) cancer (i) areas (connected regions) and either immune-rich or
blood vessel (BV) areas (j), normalized (divided) by the total cancer area.
(PDF 296 kb)

Additional file 10: Supplementary Figure S5. Schematic of the logic
used to translate risk category of patient slides to patient risk. Patients
who possessed multiple resection slides were put into a high-risk
subgroup if any of their slides were classified as high-risk by the
recurrence classifier. (PDF 328 kb)

Additional file 11: Supplementary Figure S6. Recurrence distributions
of the 159 patients in the training/test cohort, ordered according to
earliest censored time or time of recurrence to last follow-up. Red points
indicate a recurrence at the last follow up date while green points
specify censoring. (PDF 501 kb)

Additional file 12: Supplementary Table S4. The distribution of
baseline characteristics between patients who experienced ipsilateral
recurrences versus those that did not in the training cohort. The χ2 p
value signifies significant difference in proportions. (PDF 538 kb)

Additional file 13: Supplementary Table S5. Distribution of baseline
characteristics between patients who experienced recurrence versus
those that did not in the validation cohort. The χ2 p-value signifies
significant difference in proportions. (PDF 538 kb)

Additional file 14: Supplementary Figure S7. Effect of sample size
used for ground truth annotation on cross-validated accuracy. Average k-
fold accuracy of annotation prediction versus number of ground truth
regions. Shaded bands represent 95% confidence intervals. (PDF 229 kb)

Additional file 15: Supplementary Table S6. Additional confusion
matrix performance metrics for the annotation classifier. (PDF 210 kb)

Additional file 16: Supplementary Figure S8. (A) The cumulative
density function (CDF) of feature significance, noted by the t-test p-
values, versus maximum follow-up (FU) time explored. Using 10-year
recurrence, 37% of whole slidefeatures were significantly (0.05) different
between patients who developed recurrence by 10 years versus those
that remained recurrence-free. (B) Within this 10-year follow-up
recurrence distinction, the significant feature distribution by class
difference is shown in a radar plot, with the max fill (blood vessel
features) indicating 39% of the filtered total significant features.
(PDF 232 kb)

Additional file 17: Supplementary Table S7. Comparison of multiple
machine learning algorithms to select the best model (and its associated
features) for the recurrence classifier. ‘No annotation’ indicates the
performance of a random forest model built without considering classes
obtained from the first annotation step. Optimized models reflect
performance after selection of optimal set of features. For each ML
model, the model accuracy and high-risk group hazard ratio upon using
either the full feature set or the optimized feature set, are shown.
(PDF 364 kb)

Additional file 18: Supplementary Table S8. Feature characteristics
of the final 8-feature recurrence classification model. The significance
shown is based on the t-test for each feature between patients who
experienced recurrence within 10 years and those that did not. The
misclassification cost is computed sequentially (for e.g., the
misclassification cost for feature 3 is the cost for a model which
includes features 1, 2 and 3). SFTA: Segmentation-based Fractal
Texture Analysis, GLRL: Grey Level Run Length, GLCO: Grey Level
Co-Occurrence. (PDF 357 kb)

Additional file 19: Supplementary Figure S9. Combination of features
produces optimal stratification. (A) Optimally stratifying patients by
feature #3 provides little individual prognostic benefit. However, if
patients are first split by feature #1, followed by feature #3 (B), a very
significant survival difference can be observed between the high- and
low-risk groups (C). (PDF 257 kb)

Additional file 20: Supplementary Figure S10. Kaplan-Meier curves of
patients, without discordant slides, within the training cohort stratified by
the trained recurrence classifier model. Significance is measured through
the log-rank test. (PDF 209 kb)

Additional file 21: Supplementary Figure S11. Stratification of
patients in training cohort using standard clinical variables. Cross
validated Kaplan-Meier curves of patient outcomes (Recurrence-free
survival, RFS) stratified based on (A) tumor size, (B) patient age, (C)
comedo necrosis status, and (D) Nottingham grade. Significance is
measured through the log-rank test. (PDF 253 kb)

Additional file 22: Supplementary Figure S12. (A) The Harrell’s c-
statistic and 95% confidence interval for the 8-feature model and
common clinopathological variables in the training cohort. (B) The Akaike
Information Criterion (AIC) comparing the fit of a null model (no
variables), the 8-feature model, and a model composed of the common
clinopathological variables (Grade, margins status, necrosis, radiation, age,
and size). The lower the AIC value the better the model fits the
recurrence data. (PDF 225 kb)

Additional file 23: Supplementary Figure S13. Impact of clinical
features on model performance when clinical variables are concatenated
with the 8 features of the recurrence classifier, within a random forest
model. Averaged out-of-bag feature importance (and 95% confidence
intervals) from 100 models shows that clinical features do not contribute
positively to the overall performance of the model. Feature importance
(i.e., how heavily the model relies on each given feature for the output
prediction) is defined as the change in prediction error when the values
of those variables are permuted (to, in effect, break the relationship
between the feature and the model outcome) across out-of-bag
observations. Hence larger error changes correspond to more vital
variables. Insert: Average cross-validated accuracy and hazard ratios of
models built with and without clinical variables show (yes/no) significant
differences. (PDF 257 kb)

Additional file 24: Supplementary Figure S14. Cross validated Kaplan-
Meier curves of patients within the training cohort, developed by
combining the testing sets for a cross validated iteration. (A) The
recurrence classifier model used with Grade 3 patients’ slides only. (B) The
recurrence classifier model used with Grade 1 and 2 patients’ slides only. (C)
Recurrence classifier used on slides from patients who received adjuvant
radiation and (D) Recurrence classifier used on slides taken from patients
treated with BCS alone. (PDF 282 kb)

Additional file 25: Supplementary Figure S15. (A) Cross validated
Kaplan-Meier curves of patients within the training cohort stratified by
the trained recurrence classifier and using only invasive recurrence as an
event. Significance is measured through the log-rank test. (B) Univariate
and multivariate Cox regression analysis comparing the influence of
common clinicopathological variables alongside the 8-feature recurrence
risk prediction model for invasive recurrence-free survival, on the training
set. (PDF 340 kb)

Additional file 26: Supplementary Figure S16. (A) Cross validated
Kaplan-Meier curves of patients within the training cohort stratified by
the trained recurrence classifier and using only DCIS recurrence as an
event. Significance is measured through the log-rank test. (B) Univariate
and multivariate Cox regression analysis comparing the influence of
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common clinicopathological variables alongside the 8-feature recurrence
risk prediction model for DCIS recurrence-free survival, on the training
set. (PDF 349 kb)

Additional file 27: Supplementary Figure S17. Mean values for the
continuous metrics obtained when using A) the class probability, or
proportion of recurrence voting trees, using the original random forest
model and B) the output of a random survival forest trained with the 8
selected features. The astrix (*) represents groups with significant (p <0.05)
differences in averages. (PDF 233 kb)

Additional file 28: Supplementary Table S9. Univariate cox regression
analysis of the impact that continuous metrics can have on both the
training (through combining the cross-validation test sets) and validation
cohorts. The random survival forest (RSF) was a new model trained with
the 8 selected features whereas the RF class probability reflects the
continuous score obtained from counting the proportion of trees voting
for ‘recurrence’ in the classification model. (PDF 399 kb)

Additional file 29: Supplementary Figure S18. Kaplan-Meier curves of
slides within the validation cohort stratified by the trained recurrence
classifier model. Significance is measured through the log-rank test.
(PDF 201 kb)

Additional file 30: Supplementary Figure S19. Kaplan-Meier curves of
patients, without discordant slides, within the validation cohort stratified
by the trained recurrence classifier model. Significance is measured
through the log-rank test. (PDF 199 kb)

Additional file 31: Supplementary Fig 20. (A) The Harrell’s c-statistic
and 95% confidence interval for the 8-feature model and common
clinopathological variables in the validation cohort. (B) The Akaike
Information Criterion (AIC) comparing the fit of a null model (no
variables), the 8-feature model, and a model composed of the
common clinopathological variables (Margins status, necrosis,
radiation, age, and size). The lower the AIC value the better the
model fits the recurrence data. (PDF 224 kb)

Additional file 32: Supplementary Figure S21. Cross validated Kaplan-
Meier curves of patients within the validation cohort, developed by
combining the testing sets for a cross validated iteration. (A) Recurrence
classifier model used on slides from patients who received adjuvant
radiation and (B) Patients who were treated with BCS alone. Significance is
measured through the logrank test. (PDF 221 kb)

Additional file 33: Supplementary Figure S22. Cross validated Kaplan-
Meier curves of patients within the validation cohort, developed by
combining the testing sets for a cross validated iteration. (A) Recurrence
classifier model used on slides from patients who received adjuvant
radiation and (B) Patients who were treated with BCS alone. Significance
is measured through the logrank test. (PDF 221 kb)

Additional file 34: Supplementary Figure S23. (A) Kaplan-Meier
curves showing robust stratification of patients in the validation cohort
into high-risk of recurrence and low-risk of recurrence subgroups and
using only DCIS recurrence as an event. (B) Univariate and multivariate
Cox regression analysis comparing the influence of common
clinicopathological variables alongside the 8-feature recurrence risk
prediction model for DCIS recurrence-free survival, on the validation set.
(PDF 325 kb)
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