1,428 research outputs found

    A Semi-parametric Technique for the Quantitative Analysis of Dynamic Contrast-enhanced MR Images Based on Bayesian P-splines

    Full text link
    Dynamic Contrast-enhanced Magnetic Resonance Imaging (DCE-MRI) is an important tool for detecting subtle kinetic changes in cancerous tissue. Quantitative analysis of DCE-MRI typically involves the convolution of an arterial input function (AIF) with a nonlinear pharmacokinetic model of the contrast agent concentration. Parameters of the kinetic model are biologically meaningful, but the optimization of the non-linear model has significant computational issues. In practice, convergence of the optimization algorithm is not guaranteed and the accuracy of the model fitting may be compromised. To overcome this problems, this paper proposes a semi-parametric penalized spline smoothing approach, with which the AIF is convolved with a set of B-splines to produce a design matrix using locally adaptive smoothing parameters based on Bayesian penalized spline models (P-splines). It has been shown that kinetic parameter estimation can be obtained from the resulting deconvolved response function, which also includes the onset of contrast enhancement. Detailed validation of the method, both with simulated and in vivo data, is provided

    Bone imaging in prostate cancer: the evolving roles of nuclear medicine and radiology

    Get PDF
    The bone scan continues to be recommended for both the staging and therapy response assessment of skeletal metastases from prostate cancer. However, it is widely recognised that bone scans have limited sensitivity for disease detection and is both insensitive and non-specific for determining treatment response, at an early enough time point to be clinically useful. We, therefore, review the evolving roles of nuclear medicine and radiology for this application. We have reviewed the published literature reporting recent developments in imaging bone metastases in prostate cancer, and provide a balanced synopsis of the state of the art. The development of single-photon emission computed tomography combined with computed tomography has improved detection sensitivity and specificity but has not yet been shown to lead to improvements in monitoring therapy. A number of bone-specific and tumour-specific tracers for positron emission tomography/computed tomography (PET/CT) are now available for advanced prostate cancer that show promise in both clinical settings. At the same time, the development of whole-body magnetic resonance imaging (WB-MRI) that incorporates diffusion-weighted imaging also offers significant improvements for detection and therapy response assessment. There are emerging data showing comparative SPECT/CT, PET/CT, and WB-MRI test performance for disease detection, but no compelling data on the usefulness of these technologies in response assessment have yet emerged

    Developments in MRI-targeted prostate biopsy

    Get PDF
    PURPOSE OF REVIEW: MRI-targeted prostate biopsy may be an attractive alternative to systematic biopsy for diagnosing clinically significant prostate cancer. In this narrative review, we discuss the new developments that have occurred in the advancement of MRI-targeted prostate biopsy, over the past 24 months. RECENT FINDINGS: MRI-targeted biopsy offers enhanced diagnostic accuracy, when compared with the current standard of care of systematic transrectal ultrasound-guided (TRUS) biopsy, by decreasing the overall number of biopsies needed, maintaining or improving significant prostate cancer detection, and reducing the detection of clinically insignificant prostate cancer. The necessity of combining systematic prostate biopsy with MRI-targeted biopsy is still debated. The use of MRI--ultrasound fusion systems for lesion-targeting is promising for optimizing significant cancer detection, but recent evidence suggests that additional cognitive biopsy cores are still useful in detecting additional cancers. SUMMARY: MRI-targeted biopsy in selected men with positive MRI offers a number of benefits over systematic biopsy in all men, and as such, may emerge as the new standard of care for the diagnosis of clinically significant prostate cancer

    Whole-body magnetic resonance imaging (WB-MRI) for cancer screening in asymptomatic subjects of the general population: review and recommendations.

    Get PDF
    BACKGROUND:The number of studies describing the use of whole-body magnetic resonance imaging (WB-MRI) for screening of malignant tumours in asymptomatic subjects is increasing. Our aim is to review the methodologies used and the results of the published studies on per patient and per lesion analysis, and to provide recommendations on the use of WB-MRI for cancer screening. MAIN BODY:We identified 12 studies, encompassing 6214 WB-MRI examinations, which provided the rates of abnormal findings and findings suspicious for cancer in asymptomatic subjects, from the general population. Eleven of 12 studies provided imaging protocols that included T1- and T2-weighted sequences, while only five included diffusion weighted imaging (DWI) of the whole body. Different categorical systems were used for the classification and the management of abnormal findings. Of 17,961 abnormal findings reported, 91% were benign, while 9% were oncologically relevant, requiring further investigations, and 0.5% of lesions were suspicious for cancer. A per-subject analysis showed that just 5% of subjects had no abnormal findings, while 95% had abnormal findings. Findings requiring further investigation were reported in 30% of all subjects, though in only 1.8% cancer was suspected. The overall rate of histologically confirmed cancer was 1.1%. CONCLUSION:WB-MRI studies of cancer screening in the asymptomatic general population are too heterogeneous to draw impactful conclusions regarding efficacy. A 5-point lesion scale based on the oncological relevance of findings appears the most appropriate for risk-based management stratification. WB-MRI examinations should be reported by experienced oncological radiologists versed on WB-MRI reading abnormalities and on onward referral pathways
    corecore