18 research outputs found

    Barrier inhomogeneities of Al/p-In2Te3 thin film Schottky diodes

    Get PDF
    The current-voltage (I-V) and capacitance-voltage (C-V) characteristics of p-In2Te3/Al thin films Schottky diodes papered by Flash Evaporation technique were measured in the temperature range 303-335 K have been interpreted on the basis of the assumption of a Gaussian distribution of barrier heights (φbo) due to barrier height inhomogeneities that prevail at the interface. It has been found that the occurrence of Gaussian distribution of BHs is responsible for the decrease of the apparent BH (φbo) and increase of the ideality factor (η). The inhomogeneities are considered to have a Gaussian distribution with a mean barrier height of (φbm) and standard deviation (σs) at zero-bias. Furthermore, the activation energy value (φb) at T = 0 and Richardson constant (A**) value was obtained as 0.587 eV and 3.09 Acm– 2 K– 1 by means of usual Richardson plots. Hence, it has been concluded that the temperature dependence of the I-V characteristics of p-In2Te3/Al Schottky Diodes can be successfully explained on the basis of TE mechanism with a Gaussian distribution of the BHs. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2790

    Fabrication and Characterization of Al/p-CuInAlSe2 Thin Film Schottky Diodes

    Get PDF
    Al/p-CuInAlSe2 polycrystalline schottky diodes fabricated by flash evaporation method were undertaken for their electrical analysis at room temperature. Diode parameters of the undertaken diodes were then derived from the current-voltage (I-V) as well as capacitance-voltage (C-V) characteristics. It has been observed that the schottky barrier height deduced from the room temperature I-V is lower to that obtained from the C-V characteristics and is attributed to the fact that I-V analysis includes both the image force and dipole lowering effects and is also reduced by the tunneling and leakage currents. The slope variation of the frequency dependent C – 2-V characteristics for the Al/p-CuInAlSe2 Schottky diode at varying frequency values from 50 kHz to 1 MHz suggests a large density of slow traps or interface states at the M-S junction. As emerging from the parameters values energy band diagram of Al and P-CuInAlSe2 has been reconstructed. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3100

    Current transport behaviour of Au/n-GaAs Schottky diodes grown on Ge substrate with different epitaxial layer thickness over a wide temperature range

    Get PDF
    The work presents temperature dependent forward and reverse current-voltage (I-V) analyses of n-GaAs/Au Schottky Diodes grown on n+ Ge substrate with different epitaxial layer thicknesses. While some of the Schottky diodes follow TED mechanism, others exceed significantly from this theory due to existence of patches of reduced barrier height embedded in the Schottky interface. The zero bias barrier heights (φbo) increase (0.649 to 0.809 eV) while the ideality factors (η) decrease (1.514 to 1.052) with increase in epitaxial layer thickness (1-4 μm), thus, indicating similar behaviour to that observed for the I-V characteristics of the undertaken Schottky diodes with decreasing temperature. It all indicated the existence of barrier inhomogenities over the M-S interface. The breakdown behaviour analysis of these diodes showed some interesting results; the breakdown voltage (VBR) decreases with temperature and shows ‘Defect Assisted Tunneling’ phenomenon through surface or defect states in the 1 μm thick epitaxial layer Schottky diode while VBR increases with temperature in 3 μm and 4 μm thick epitaxial layer Schottky diodes which demonstrate ‘Avalanche Multiplication’ mechanism responsible for junction breakdown. The reverse breakdown voltage is also seen to increase (2.7-5.9 Volts) with the increase in epitaxial layer thickness of the diodes. The undertaken diodes have been observed to follow TFE mechanism at low temperatures (below 200 K) in which the tunneling current component increases with epitaxial layer thickness which has been ascribed as an impact of GaAs/Ge hetero-interface over the Au/n-GaAs Schottky barrier. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2788

    Impact of annealing on CuInSe2 thin films and its Schottky interface

    Get PDF
    The room temperature current–voltage (I-V) characteristics of the Al/p-CuInSe2 Schottky Diodes fabricated on thermally evaporated CIS thin films, before and after annealing, were studied. Prior to their diode formation, the undertaken CIS thin films were compared on the basis of structural, morphological and electrical investigations. Wherein, annealed films showed an increase in the grain size and carrier concentration values while decrease in resistivity. I-V analysis of the Schottky diodes depicted decrease in the barrier heights and increase in ideality factors of those formed on annealed films. The diodes, thus, indicated the existence of barrier inhomogenity at the M-S interface. The annealed Schottky diodes also demonstrated better ideality factor values with increased thickness of CIS layer. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2792

    Structure, Optical And Electrical Characterization Of Tin Selenide Thin Films Deposited At Room Temperature Using Thermal Evaporation Method

    Get PDF
    Tin Selenide (SnSe) is an important IV-VI compound semiconducting material used for various devices like memory switching, an efficient solar cell and holographic recording systems. SnSe thin films of the thickness of 100 nm were deposited by thermal evaporation method on a Glass substrate at room temperature. The prepared samples were investigated for structural, compositional, morphological and optical characte-rization respectively by using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and transmission measurements. Thus deposited films showed a good polycrystalline quality having preferred (111) orientation with uniformly distributed spherical grains having size 16nm.The grown film identified as P- types by hot probe method. The films were found to have direct band transition having an optical bandgap (Eg) of 1.92 eV at room temperature. The temperature depended electrical resistivity (ρ) determined by using the two probe method, found to be 390 Ω·m at room temperature. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/952

    Anomalous current transport in Au/low-doped n-GaAs Schottky barrier diodes at low temperatures

    Get PDF
    The current-voltage characteristics of Au=low doped n-GaAs Schottky diodes were determined at various temperatures in the range of 77-300 K. The estimated zero-bias barrier height and the ideality factor assuming thermionic emission (TE) show a temperature dependence of these parameters. While the ideality factor was found to show the T0 effect, the zero-bias barrier height was found to exhibit two different trends in the temperature ranges of 77-160 K and 160-300 K. The variation in the flat-band barrier height with temperature was found to be -(4.7±0.2)× 104 eVK-1, approximately equal to that of the energy band gap. The value of the Richardson constant, A∗∗, was found to be 0.27 Acm-2K-2 after considering the temperature dependence of the barrier height. The estimated value of this constant suggested the possibility of an interfacial oxide between the metal and the semiconductor. Investigations suggested the possibility of a thermionic field-emission-dominated current transport with a higher characteristic energy than that predicted by the theory. The observed variation in the zero-bias barrier height and the ideality factor could be explained in terms of barrier height inhomogenities in the Schottky diode

    Effect of Film Thickness and Annealing on the Structural and Optical Properties of CuInAlSe2 Thin Films

    Get PDF
    CuIn1 – xAlxSe2 (CIAS) thin films were grown using flash evaporation method by varying the film thickness from 500 nm to 700 nm. Prepared CIAS thin films were annealed at 573 K for one hour in vacuum. The influence of film’s thickness and the annealing temperature were characterized by the X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive analysis of X-ray (EDAX), Optical transmission measurements, and Hall Effect measurement. As the film thickness increases the crystallinity improves and due to that the optical absorption also improves. The further improvement for different thicknesses of CIAS thin films were observed by annealing. The thicker (700 nm) and annealed CIAS thin film shows the crystallite size of 24.3 nm, energy band gap of 1.19 eV, and resistivity of about 9 102 Ω cm. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3532

    Crystal structure of a daturalactone - a withanolide

    No full text
    The crystal structure of a daturalactone derivative has been determined by X-ray structural analysis. The compound crystallizes in orthorhomic space group P2(1)2(1)2(1) with cell parameters a = 15.141(1) angstrom, b = 18.425(1) angstrom, c = 19.251(2) angstrom. The structure was solved by direct methods and refined to R = 0.082. The asymmetric unit contains two non-equivalent molecules. Extensive hydrogen bonding is present. The conformations of the rings are A: a distorted half-chair, B: a perfect half-chair, C: a chair, D: an envelope-half chair and E: a twist boat. Ring junctions A/B, B/C, C/D are all trans fused. Methyl carbons C(18), C(19), C(27) and the lactone moiety is beta-oriented whereas the methyl carbons C(21) and C(28) are alpha-oriented

    Anomalin. A Dihydropyranocoumarin Derivative from the Plant Lingusticum elatum

    No full text
    The title compound, 9,10-dihydro-8,8-dimethyl-2-oxo-2H,8H-benzo[1,2-b:3,4-b']dipyran-9,10-diyl 2-methyl-2-butenoate, C24H26O7, contains a highly planar coumarin nucleus and a substituted dihydropyran ring (C), which has a distorted half-chair conformation, with an 8 alpha,9 beta orientation. The conformation of ring C is further supported by the two angelyloxy (2-methyl-2-butenoyloxy) substituents at positions C9 and C10, which are cis oriented and thus cannot both occupy equatorial positions with respect to the plane of ring C. The conformations of the two angelyloxy substituents are different, as indicated by their endocyclic torsion angles. The most striking of these angles are O1'-C2'-C4'=C6' and O1'-C2'-C4'-C5' [-137.7 (5) and 43.7 (5)degrees, respectively, in the chain at C10 and 155.8 (5) and -24.7 (9)degrees, respectively in the chain at C9]. These variations are due to two intramolecular hydrogen bonds, namely, C16-H161 ... O1' [C16 ... O1' 3.056 (7) Angstrom] and C7''-H7Y ... O3'' [C7'' ... O3'' 2.955 (12) Angstrom]. The methyl substituents, C15 and C16, at position C8 are alpha and beta oriented, respectively. The crystal structure is stabilized by a weak C4-H41 ... O3' hydrogen bond [C4 ... O3' 3.297 (6) Angstrom] between the screw-related molecules

    Anomalous current transport in Au/low-doped n-GaAs Schottky barrier diodes at low temperatures

    No full text
    The current-voltage characteristics of Au/low-doped n-GaAs Schottky diodes were determined at various temperatures in the range of 77-300 K, The estimated zero-bias barrier height and the ideality factor assuming thermionic emission (TE) show a temperature dependence of these parameters. While the ideality factor was found to show the ToT_o effect, the zero-bias barrier height was found to exhibit two different trends in the temperature ranges of 77-160 K and 160-300 K, The variation in the Bat-band barrier height with temperature was found to be - (4.7 +/- 0.2) 2104210^4 eVK1eVK^1, approximately equal to that of the energy band gap, The value of the Richardson constant, A**, was found to be 0.27 A cm^-^2 K^-^2 after considering the temperature dependence of the barrier height. The estimated value of this constant suggested the possibility of an interfacial oxide between the metal and the semiconductor. Investigations suggested the possibility of a thermionic field- emission-dominated current transport with a higher characteristic energy than that predicted by the theory, The observed variation in the zero-bias barrier height and the ideality factor could be explained in terms of barrier height inhomogenities in the Schottky diode
    corecore