54 research outputs found

    Micro- and Nanotechnology in Biosensor Research

    Get PDF
    Biosensor research is strongly interdisciplinary as it requires experience in chemistry, biochemistry, biology, material science, electronics and engineering. The recent progress in micro- and nanotechnology allows to miniaturize complex systems as well as to address problems at a molecular level. The architecture and even the function of single molecules on a sensor surface have been investigated and can to some extent even be predetermined. At present, microtechnology is well established in the production of micro-fluid transport systems and has a high potential for cell-culturing and monitoring devices in the future.Three different running projects are presented which illustrate the usefulness of micro- and nanotechnology for biosensor research: 1) Investigations on amperometric immunosensor devices, 2) the measurement of binding forces of individual antigen-antibody pairs, and 3) the fabrication of microchannels suitable for neuron-cell growth and recording. Big efforts, however, will be required to integrate the recognition element of a sensor into a device for an intended applicatio

    Thermochemical Reactivity of Metal Carbonates

    Get PDF
    The thermochemical reactivity of alkaline earth metal and transition-metal carbonates is discussed. Emphasis is given to the dependence of degradation mechanisms and the concomitant formation of solid and volatile products on temperature range, gas atmosphere, and type of energy impact. The experimental findings comprise informative aspects, how immobilized inorganic carbon, i.e. as metal carbonate, can be converted by heterogeneous solid-state decompositions and/or in situ catalysis into inorganic solid products and into volatile organic carbon compounds

    Nanostructuring polyetheretherketone for medical implants

    Get PDF
    Surface roughness is a vital factor for medical implants since the cells of the surrounding tissue interact with the underlying substrate on the micro- and nanometer scales. In order to improve the surface morphology of implants, appropriate large-area micro- and nanostructuring techniques have to be identified being applicable to irregularly shaped structures. We demonstrate that plasma treatments of polyetheretherketone (PEEK) thin films produce nanostructured surfaces in a reproducible manner. They are easily tailored by varying plasma intensity using oxygen and ammonia as process gases. It was observed that roughness and nanostructure density linearly depend on plasma intensity. Oxygen plasma turned out to exhibit a stronger effect compared to ammonia plasma at the same processing conditions. For cell interaction studies, the mean size of the nanostructures was intentionally varied between 10 nm and 100 nm. In vitro experiments revealed that human mesenchymal stem cells (hMSC) adhere inhomogenously on untreated PEEK films, but the plasma treatment with oxygen or ammonia allows the hMSC to adhere and proliferate. Fluorescence microscopy of the cells on the PEEK films turned out to be difficult because of the strong auto-fluorescence of the PEEK substrate. Stains including the whole cell vital stain Calcein-AM allowed cell morphology studies on plasma-treated PEEK films. In the case of the analysis of cell compartments such as the actin cytoskeleton, confocal laser scanning microscopy (CLSM) was successfully applie

    Resolution extension by image summing in serial femtosecond crystallography of two-dimensional membrane-protein crystals

    Get PDF
    Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography at X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals

    Polymer brush structures functionalized with molecular beacon for point-of-care diagnostics

    No full text
    Development of point-of-care (POC) diagnostic tools is an emerging area with significant potential for disease surveillance, monitoring, and diagnosis, especially for underdeveloped or developing countries. Our current research focuses on rapid, POC technologies for DNA or RNA detection that can be deployed to significantly decrease the turnaround time when encountering demands for massive quantities of tests, e.g. during a pandemic. Hairpin-like DNA or molecular beacon (MB) probes can be used as bioreceptors to specifically bind to a pathogen DNA or RNA. In the presence of complementary DNA, the immobilized MBs undergo a conformational change, and the fluorescent signal of 5’-FAM is restored from the internally quenched fluorophore. Here we studyinvestigating 3D polymer brush (PB) structures with antifouling surface properties, functionalized with a particular MB-DNA probe. Patterns of polymer brushes were created on foils of poly(ethylene-co-tetrafluoroethylene) (ETFE) activated through a metal mask using extreme ultraviolet (EUV) radiation, yielding patterns of initiators for the subsequent graft-copolymerization of vinylpyrrolidone (VP) and glycidyl methacrylate (GMA). The successful copolymerization of VP and GMA on the EUV-exposed areas was proved based on characteristic peaks of VP and GMA in ATR-IR spectra. Structure heights in the range of micrometers were achieved, which enables binding of considerably higher densities of probe molecules compared to monolayer systems. The grown polymer brush structures provide both hydrophilicity, beneficial to minimize bio-fouling, and epoxide functional groups for further functionalization. These were biotinylated and functionalized with streptavidin and 3′-biotinylated MBs, resulting in a promising platform for fluorescence-based DNA detection as demonstrated by significant fluorescence increase upon addition of target DNA down to nM concentrations. Finally, embedding of optimized MB/PB structures into a microfluidic channel and coupling to a mobile-phone-based fluorescence microscope for signal detection was demonstrated

    Systematically organized nanopillar arrays reveal differences in adhesion and alignment properties of BMSC and Saos-2 cells

    No full text
    Polymeric test surfaces of P(L-D,L)LA and of a P(L-D,L)LA:PLGA blend decorated with 25 nanopillar covered fields, were used to investigate differences in growth of bone marrow stem cells (BMSC) and osteosarcoma cells (Saos-2). The fields were populated with pillars (ca. 900 nm tall, 200 nm x 200 nm area) separated systematically from each other with 1-10 mu m gaps. Saos-2 cells populated fields decorated with pillars 1 mu m apart but they avoided pillar-free surfaces. In contrast, BMSCs avoided fields with interpillar distances <2 mu m. Both BMSCs and Saos-2 cells aligned in the direction of the shorter distance when at least one of the interpillar distances was greater than 1.5 mu m. Coating the P(L-D,L)LA surfaces with cell adhesive protein fibronectin enabled the BMSC to populate fields with high pillar density which they had avoided when uncoated. Decreasing the stiffness of the film surface by using a blend of (P(L-D,L)LA and PLGA) made them more acceptable for attachment by the BMSC cells

    Nanoengineering of fibre surface for carbon fibre-carbon nanotube hierarchical composites

    No full text
    We aim to enhance the carbon fibre (CF)-matrix interface by synthesizing carbon nanotubes (CNTs) on the surface of the CF, creating a hierarchical composite. A 12 nm thick aluminium oxide film applied by atomic layer deposition (ALD) provides protection of the CF from deterioration during CNT growth in a chemical vapour deposition (CVD) process. However, the adhesion of alumina to CF, grown in classical water/trimethylaluminium ALD is severely diminishing during CNT growth, as detected by interface shear strength (IFSS) measurements. In our approach to improve the CF-alumina adhesion, we employed a pre-treatment of the CF with ozone and entirely replaced water with ozone in the ALD process, to promote the covalent bonding of the alumina to the CF surface. The current results show a new perspective in achieving the CNT synthesis on the CF while successfully mitigating its detrimental effects on the fibre mechanical properties.</p

    From pH- to Light-Response: Postpolymerization Modification of Polymer Brushes Grafted onto Microporous Polymeric Membranes

    No full text
    A microporous pH- and light-responsive membrane that enables remote control over its interfacial properties has been fabricated. pH-Responsiveness was imparted to a porous polypropylene film via grafting of poly(methacrylic acid) brushes from the substrate using argon-plasma-induced free-radical graft polymerization. Morphological changes as a function of grafting level were analyzed using atomic force microscopy. Conversion into a light-responsive membrane was performed via postpolymerization modification to covalently attach photochromic spiropyran moieties to the grafted polymer brushes. Reversible switches in wettability and permeability were determined upon changing from acidic to basic pH or upon alternating UV- and visible-light irradiation. Additionally, light-responsive membranes show a switch in color upon UV exposure
    • …
    corecore