32 research outputs found

    Translocation and de novo synthesis of eicosapentaenoic acid (EPA) during nitrogen starvation in Nannochloropsis gaditana

    Get PDF
    The microalga Nannochloropsis gaditana is known for accumulating fatty acids, including the commercially interesting eicosapentaenoic acid (EPA) within the polar lipids (PL) and neutral lipids (NL). During microalgal growth EPA is mainly present in the PL. Upon nitrogen starvation N. gaditana accumulates large amounts of TAG in lipid bodies. The neutral lipid fraction will mainly consist of triacylglycerol (TAG). When expressed per total cell dry weight, the NL-localized EPA increased while the PL-localized EPA decreased, suggesting that EPA is translocated from the PL into the NL lipids during nitrogen starvation. Here, we elucidated the origin of EPA in NL of N. gaditana by firstly growing this microalga under optimal growth conditions with 13CO2 as the sole carbon source followed by nitrogen starvation with 12CO2 as the sole carbon source. By measuring both 12C and 13C fatty acid isotope species in time, the de novo synthesized fatty acids and the already present fatty acids can be distinguished. For the first time, we proved that actual translocation of EPA from the PL into the NL occurs during nitrogen starvation of N. gaditana. Next to being translocated, EPA was synthesized de novo in both PL and NL during nitrogen starvation. EPA was made by carbon reshuffling within the cell as well. EPA was the main fatty acid translocated, suggesting that the enzyme responsible for fatty acid translocation has a high specificity for EPA.publishedVersio

    An assessment of heterosexuals\u27 perceived risk for HIV infection

    Get PDF
    Microalgae are a sustainable source of lipids. A commonly used strategy for lipid accumulation in microalgae is a two-step batch cultivation, with a growth phase followed by a nitrogen starvation phase. A problem with this process is the decrease in photosynthetic efficiency during the nitrogen starvation phase, which leads to low lipid productivities. In this research, a new process strategy was studied with the aim to improve lipid productivity of the microalgae Nannochloropsis gaditana. The nitrogen concentrations were chosen to assure consumption of most part of the nitrogen during the night. An improvement of the photosystem II maximum quantum yield and an increase in the dry weight and TAG concentration was achieved from day 7 of nitrogen starvation onwards when the culture was fed with nitrogen each night compared to a culture without nitrogen addition. Consequently, the time-average TAG yield on light was also higher after 7 days of nitrogen starvation. However, since the maximal time-averaged triacylglycerol (TAG) yield on light was reached after 3 days of nitrogen starvation, the improved photosynthetic activity did not lead to an increase of the maximal time-averaged TAG yield on light. The culture with nitrogen addition had a higher protein concentration (1.1 compared to 0.7 g L−1), showing that the added nitrogen was mainly used for protein production. A higher chlorophyll a content (2.0 compared to 0.8 μg mg−1) showed improved photosystem and that a small part of nitrogen was used for chlorophyll a. Small nightly nitrogen additions during batch cultivation of nitrogen starved N. gaditana did result in improvement in photosystem II maximal quantum yield, biomass concentration, TAG production and a higher time-averaged maximal TAG yield on light, after 7 days of nitrogen starvation.</p

    Metabolic modeling of Chlamydomonas reinhardtii: energy requirements for photoautotrophic growth and maintenance

    Get PDF
    In this study, a metabolic network describing the primary metabolism of Chlamydomonas reinhardtii was constructed. By performing chemostat experiments at different growth rates, energy parameters for maintenance and biomass formation were determined. The chemostats were run at low irradiances resulting in a high biomass yield on light of 1.25 g  mol−1. The ATP requirement for biomass formation from biopolymers (Kx) was determined to be 109 mmol g−1 (18.9 mol mol−1) and the maintenance requirement (mATP) was determined to be 2.85 mmol g−1 h−1. With these energy requirements included in the metabolic network, the network accurately describes the primary metabolism of C. reinhardtii and can be used for modeling of C. reinhardtii growth and metabolism. Simulations confirmed that cultivating microalgae at low growth rates is unfavorable because of the high maintenance requirements which result in low biomass yields. At high light supply rates, biomass yields will decrease due to light saturation effects. Thus, to optimize biomass yield on light energy in photobioreactors, an optimum between low and high light supply rates should be found. These simulations show that metabolic flux analysis can be used as a tool to gain insight into the metabolism of algae and ultimately can be used for the maximization of algal biomass and product yield

    Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (II) evaluation of TAG yield and productivity in controlled photobioreactors

    Get PDF
    Background Many microalgae accumulate carbohydrates simultaneously with triacylglycerol (TAG) upon nitrogen starvation, and these products compete for photosynthetic products and metabolites from the central carbon metabolism. As shown for starchless mutants of the non-oleaginous model alga Chlamydomonas reinhardtii, reduced carbohydrate synthesis can enhance TAG production. However, these mutants still have a lower TAG productivity than wild-type oleaginous microalgae. Recently, several starchless mutants of the oleaginous microalga Scenedesmus obliquus were obtained which showed improved TAG content and productivity. Results The most promising mutant, slm1, is compared in detail to wild-type S. obliquus in controlled photobioreactors. In the slm1 mutant, the maximum TAG content increased to 57¿±¿0.2% of dry weight versus 45¿±¿1% in the wild type. In the wild type, TAG and starch were accumulated simultaneously during initial nitrogen starvation, and starch was subsequently degraded and likely converted into TAG. The starchless mutant did not produce starch and the liberated photosynthetic capacity was directed towards TAG synthesis. This increased the maximum yield of TAG on light by 51%, from 0.144¿±¿0.004 in the wild type to 0.217¿±¿0.011 g TAG/mol photon in the slm1 mutant. No differences in photosynthetic efficiency between the slm1 mutant and the wild type were observed, indicating that the mutation specifically altered carbon partitioning while leaving the photosynthetic capacity unaffected. Conclusions The yield of TAG on light can be improved by 51% by using the slm1 starchless mutant of S. obliquus, and a similar improvement seems realistic for the areal productivity in outdoor cultivation. The photosynthetic performance is not negatively affected in the slm1 and the main difference with the wild type is an improved carbon partitioning towards TAG
    corecore