119 research outputs found

    The Pacific halibut /

    Get PDF

    Cost-effectiveness of reducing salt intake in the Pacific Islands: protocol for a before and after intervention study

    Get PDF
    BackgroundThere is broad consensus that diets high in salt are bad for health and that reducing salt intake is a cost-effective strategy for preventing chronic diseases. The World Health Organization has been supporting the development of salt reduction strategies in the Pacific Islands where salt intakes are thought to be high. However, there are no accurate measures of salt intake in these countries. The aims of this project are to establish baseline levels of salt intake in two Pacific Island countries, implement multi-pronged, cross-sectoral salt reduction programs in both, and determine the effects and cost-effectiveness of the intervention strategies.Methods/DesignIntervention effectiveness will be assessed from cross-sectional surveys before and after population-based salt reduction interventions in Fiji and Samoa. Baseline surveys began in July 2012 and follow-up surveys will be completed by July 2015 after a 2-year intervention period.A three-stage stratified cluster random sampling strategy will be used for the population surveys, building on existing government surveys in each country. Data on salt intake, salt levels in foods and sources of dietary salt measured at baseline will be combined with an in-depth qualitative analysis of stakeholder views to develop and implement targeted interventions to reduce salt intake.DiscussionSalt reduction is a global priority and all Member States of the World Health Organization have agreed on a target to reduce salt intake by 30% by 2025, as part of the global action plan to reduce the burden of non-communicable diseases. The study described by this protocol will be the first to provide a robust assessment of salt intake and the impact of salt reduction interventions in the Pacific Islands. As such, it will inform the development of strategies for other Pacific Island countries and comparable low and middle-income settings around the world.<br /

    The use of airborne laser scanning to develop a pixel-based stratification for a verified carbon offset project

    Get PDF
    Background The voluntary carbon market is a new and growing market that is increasingly important to consider in managing forestland. Monitoring, reporting, and verifying carbon stocks and fluxes at a project level is the single largest direct cost of a forest carbon offset project. There are now many methods for estimating forest stocks with high accuracy that use both Airborne Laser Scanning (ALS) and high-resolution optical remote sensing data. However, many of these methods are not appropriate for use under existing carbon offset standards and most have not been field tested. Results This paper presents a pixel-based forest stratification method that uses both ALS and optical remote sensing data to optimally partition the variability across an ~10,000 ha forest ownership in Mendocino County, CA, USA. This new stratification approach improved the accuracy of the forest inventory, reduced the cost of field-based inventory, and provides a powerful tool for future management planning. This approach also details a method of determining the optimum pixel size to best partition a forest. Conclusions The use of ALS and optical remote sensing data can help reduce the cost of field inventory and can help to locate areas that need the most intensive inventory effort. This pixel-based stratification method may provide a cost-effective approach to reducing inventory costs over larger areas when the remote sensing data acquisition costs can be kept low on a per acre basis

    Limits of Identification Using VUV Spectroscopy Applied to C8H18 Isomers Isolated by GC 7GC

    Get PDF
    13-C-AJFE-UD-026This is an open access article under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license https://creativecommons.org/licenses/by/4.0/. Please cite this article as: Bell DC, Feldhausen J, Spieles AJ, Boehm RC, Heyne JS. Limits of identification using VUV spectroscopy applied to C8H18 isomers isolated by GC 7GC. Talanta. 2023 Jun 1;258:124451. https://doi.org/10.1016/j.talanta.2023.124451The vacuum ultraviolet detector for gas chromatography can be used to identify structural differences between isomers with similar chromatographic elution times, which adds detail to characterization, valuable for prescreening of sustainable aviation fuel candidates. Although this capability has been introduced elsewhere, vacuum ultraviolet spectroscopy for saturated hydrocarbons has been examined minimally, as the similarities between their spectra are much less significant than their aromatic counterparts. The fidelity with which structural differences can be identified has been unclear. In this work, all possible structural isomers of C8H18 are measured and determined to have unambiguously unique vacuum ultraviolet spectra. Using a statistically based residual comparison approach, the concentration limits at which the spectral differences are interpretable are tested in both a controlled study and a real fuel application. The concentration limit at which the spectral differences between C8H18 isomers are unambiguous is below 0.40% by mass and less than 0.20% with human discretion in our experimental configuration

    Five County Surname Count, 1987 (M108V1)

    No full text
    N/

    Bell System exhibit

    No full text
    624-25-1Bell Solar Battery, Direct Distance Dialing, Push Button Telephoning and Electronic Central Office are a few of the bell System exhibits

    Inside the Coral Bell School newsletter

    No full text
    The Coral Bell School of Asia Pacific Affairs continues to set the conversation on the big policy issues facing not only Australia but the Asia Pacific more broadly
    corecore