28 research outputs found

    The effect of Young's modulus on the neuronal differentiation of mouse embryonic stem cells

    Get PDF
    There is substantial evidence that cells produce a diverse response to changes in ECM stiffness depending on their identity. Our aim was to understand how stiffness impacts neuronal differentiation of embryonic stem cells (ESC's), and how this varies at three specific stages of the differentiation process. In this investigation, three effects of stiffness on cells were considered; attachment, expansion and phenotypic changes during differentiation. Stiffness was varied from 2 kPa to 18 kPa to finally 35 kPa. Attachment was found to decrease with increasing stiffness for both ESC's (with a 95% decrease on 35 kPa compared to 2 kPa) and neural precursors (with a 83% decrease on 35 kPa). The attachment of immature neurons was unaffected by stiffness. Expansion was independent of stiffness for all cell types, implying that the proliferation of cells during this differentiation process was independent of Young's modulus. Stiffness had no effect upon phenotypic changes during differentiation for mESC's and neural precursors. 2 kPa increased the proportion of cells that differentiated from immature into mature neurons. Taken together our findings imply that the impact of Young's modulus on attachment diminishes as neuronal cells become more mature. Conversely, the impact of Young's modulus on changes in phenotype increased as cells became more mature

    Surface Microscopy - a New Approach to the Diagnosis of Cutaneous Pigmented Tumors

    No full text

    Incident light microscopy of pigmented skin lesions ZUR AUFLICHTMIKROSKOPIE VON PIGMENTTUMOREN DER HAUT

    No full text
    Clinical guidelines for the diagnosis of pigmented skin lesions are not always reliable. Incident light microscopy provides an interesting approach to solving this problem. For this investigation a stereomicroscope, a glass slide and immersion oil are used. The various in vivo criteria of this method, which go beyond the changes discernible by the naked eye, are correlated with the histopathological structures. Incident light microscopy opens up a new dimension of clinical morphology for the diagnosis and differential diagnosis of malignant melanoma, dysplastic nevi or non-melanocytic pigmented neoplasms and facilitates a more precise preoperative assessment of these lesions

    Discovering the pharmacodynamics of conolidine and cannabidiol using a cultured neuronal network based workflow

    Get PDF
    Determining the mechanism of action (MOA) of novel or naturally occurring compounds mostly relies on assays tailored for individual target proteins. Here we explore an alternative approach based on pattern matching response profiles obtained using cultured neuronal networks. Conolidine and cannabidiol are plant-derivatives with known antinociceptive activity but unknown MOA. Application of conolidine/cannabidiol to cultured neuronal networks altered network firing in a highly reproducible manner and created similar impact on network properties suggesting engagement with a common biological target. We used principal component analysis (PCA) and multi-dimensional scaling (MDS) to compare network activity profiles of conolidine/cannabidiol to a series of well-studied compounds with known MOA. Network activity profiles evoked by conolidine and cannabidiol closely matched that of ?-conotoxin CVIE, a potent and selective Cav2.2 calcium channel blocker with proposed antinociceptive action suggesting that they too would block this channel. To verify this, Cav2.2 channels were heterologously expressed, recorded with whole-cell patch clamp and conolidine/cannabidiol was applied. Remarkably, conolidine and cannabidiol both inhibited Cav2.2, providing a glimpse into the MOA that could underlie their antinociceptive action. These data highlight the utility of cultured neuronal network-based workflows to efficiently identify MOA of drugs in a highly scalable assay.This research was funded by the Australian Research Council Centre of Excellence for Integrative Brain Function CE14010000 awarded to S.P. and DP150103512 awarded to S.H

    An In Vitro Differentiation Protocol for Human Embryonic Bipotential Gonad and Testis Cell Development

    Get PDF
    Currently an in vitro model that fully recapitulates the human embryonic gonad is lacking. Here we describe a fully defined feeder-free protocol to generate early testis-like cells with the ability to be cultured as an organoid, from human induced pluripotent stem cells. This stepwise approach uses small molecules to mimic embryonic development, with upregulation of bipotential gonad markers (LHX9, EMX2, GATA4, and WT1) at day 10 of culture, followed by induction of testis Sertoli cell markers (SOX9, WT1, and AMH) by day 15. Aggregation into 3D structures and extended culture on Transwell filters yielded organoids with defined tissue structures and distinct Sertoli cell marker expression. These studies provide insight into human gonadal development, suggesting that a population of precursor cells may originate from a more lateral region of the mesoderm. Our protocol represents a significant advance toward generating a much-needed human gonad organoid for studying disorders/differences of sex development
    corecore